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goal: probe the limits of functional RG for many-particle Fermi systems

here: vertex expansion and U being the small parameter

physics challenges:
phase transitions at finite U?
many-body effects in (topological) insulators?
many-body effects in non-equilibrium?
non-Hermitian systems?

technical challenges:
feedback of two-particle vertex and self-energy?
position/momentum and frequency dependence?
number of equations and expensive computations?
sharp structures for real frequencies (Keldysh)?
violation of conservation laws due to truncation?
consider non-Hermitian (gain/loss) systems?

why 0d and 1d:
large number of emerging many-body phenomena
exact analytical and numerical results to compare 
less expensive numerics as in 2d and 3d



Phase transitions: the „classic“ application of 
functional RG for Fermi systems

the model:

the phase diagram at half-filling

(adopted from Mishra et al. 2011)

note: mean-field gives transition for infinitesimal U, perturbation theory none

t = 1

(for 1d extended Hubbard model see Tam, Tsai, Campbell 2006)



the approximations: 1. neglect 3-particle vertex
2. keep one frequency in each vertex channel (p,x,d)
3. keep dynamical intra-channel feedback, static 
feedback of other channels, feedback of bare vertex
4. restrict feedback length L of vertex
5. keep full feedback of self-energy
6. sharp Matsubara frequency cutoff

vertex and self-energy at least to second order in U, U´

(real-space eCLA
adopted from Weidinger 
et al. 2017)

numerical challenges:
  1.  vertex has order N *N *L variables

2. convergence in N , L and N, is L << N ?

how does this differ from common 2d studies?
full feedback of dynamical self-energy
order parameter can be computed from propagator

cutoff to zero if infinitesimal nudge (convergence, bias?)
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Is the frequency dependence crucial (U´=0)?

N=82, L=10, S=0.001N=10, L=2



Convergence issues

note: transition is Kosterlitz-Thouless
  order parameter increase from 0 to 1 is much slower
  exact transition at U=2

N=82, L=10S=0.001



Details

absence of initial nudge:
         vertex diverges
         also true for „wrong“ nudge

role of feedback

N=42, S=0.001



Other U´ and the other phases?

U´=0.5, S=0.001

U=0, N=40, L=10 N=42, L=10, S=0.001



Functional RG for (topological) 
band insulators

the model:

the single-particle dispersion:

consider bulk (e.g. gap) and boundary („Friedel“ osc., edge states) physics
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the approximations: 1. neglect the flow of the two-particle vertex
2. keep the self-energy feedback on its own flow
3. effective single-particle picture with 
renormalized parameters
4. if OBC: spatial structure beyond unit cell one
5. density from its own flow equation
6. sharp Matsubara frequency cutoff

the numerical challenge:

to access low-energy physics: as large systems as possible



The gap

perturbation theory in U:

functional RG from effective parameters:



The „Friedel“ oscillations

exponential decay and pre-exponential function



Edge states

bulk-boundary correspondence at finite U?

consider the boundary charge instead



A quantum dot coupled to a 
phonon mode

the model:

the question: signatures of the Coulomb interaction and the phonons 
in finite bias voltage and temperature gradient particle 
and thermal steady-state current

the challenge: simple example in which the Keldysh functional RG  
                        even in the lowest truncation leads to a frequency  
                        dependent self-energy and violation of current       
                        conservation, is this a generic problem?



the approximations: 1. neglect flow of the two-particle vertex
2. after integrating out the phonon mode: 
retarded (frequency dependent) two-particle 
interaction; self-energy is frequency dependent
3. keep the self-energy feedback on its own flow
4. auxiliary reservoir cutoff

the numerical challenges: 1. real frequency (Keldysh) sharp structures to 
be integrated over on rhs of flow equations
2. high-resolution frequency grid around 
characteristic energies

perturbation theory: terms

more interesting: anti-adiabatic regime with „fast“ phonon 

Earl:) , uenl:)



The particle current (at p-h-symmetry)

power law

↑ 2Wo



Is the implementation correct?



The current conservation issue (away from p-h-sym.)

Frank-Condon blockade

lowest order useless
!



A little bit more on the physics (thermal conductance at finite voltage)



Towards new applications of functional RG: 
non-Hermitian and PT-symmetric systems

is this something fundamentally new? (Bender et al., Mostafazadeh, Brody,…, late 90ies)

are these merely effective theories for open systems with gain and loss?

(Ashida, Ueda,…, more recent)

starting point: consider interacting toy problem with real spectrum 
(no PT-symmetry breaking)



A glimpse at the formalism

(complete) biorthonormal eigenbasis

generating functional as usual

vertex expansion around: (Schütz and Kopietz 2006)

compare to ED, mean-field and perturbation theory (Bender et al. 2006)

observables?



Is the implementation correct?



A few results



What can we learn from all this?
1. phase transitions at finite U are accessible (vertex feedback!)

2. meaningful results for 1d band insulators

3. parameter regimes in which the results appear meaningful despite 
violated conservation laws, internal consistency checks useful

4. application to non-Hermitian many-body systems is promising

5. when ever possible: check implementation of the „many“ equations, 
discretization in frequency or momentum, sharp structures in integrals 
on rhs captured,…
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