Finding slow variables using Information Bottlenecks

venturing into unsolved models

Zohar Ringel | August 2022

Maciej Koch-Janusz

Sebastian D. Huber

Patrick Lenggenhager

Doruk Efe Gokmen

University of Zurich ${ }^{\text {UZ }}$

EMHzürich

Maciej Koch Janusz, and ZR, Nature Physics 14, 578-582 (2018)
P. Lenngenhager, D.E. Gokmen, ZR, S.D. Huber and Maciej Koch Janusz, Phys. Rev. X 10, 011037 (2020)

Amit Gordon, Aditya Banerjee, Maciej Koch Janusz and ZR,
Physical Review Letters 126 (24), 240601 (2021)
D.E. Gokmen, ZR, S.D. Huber and Maciej Koch Janusz

Physical review letters 127 (24), 240603 (2021)

Sounak Biswas
Felix Flicker

Lior Oppenheim

Identification of order-parameters/relevant-operators

Requires craftsmanship, RG is no silver bullet.

- When a continuum theory is given: Do RG: Stable? Good. Unstable? Hmm... Use c-theorems, small-parameters, anomalies, symmetries
- When only a lattice model is given: Guess a continuum Lagrangian based on symmetries. Often non-trivial, for instance:
- Transfer matrix? Useless for $\mathrm{d}>2$

Two illustrative examples

2d Ising

Model

Dimer
Model

Order parameters carry the relevant information for explaining low energy experiments

Enter information theory...

Standard Information theory toolbox in physics

These quantify information "without judgement" or notion of relevancy

Entropy, Von-Neumann entropy, Entanglement spectrum, Von-Neumann Mutual Information

Thermodyanmics
Boltzmann Eq.

Central charge,
Topological
degeneracies

Topological
phases of
matter,
DMRG
numerics

C-theorems in $d=2,3,4$
[Huerta,Cassini]

More recently (2000) a way of identifying relevant-information has been proposed - the Information Bottleneck

The Information Bottleneck (IB)

How to define the best lossy compression of "relevant" information

Consider compressing one random variable (V) into another (H) when what you care about is information on a third one (E).

A solution is some conditional probability $\mathrm{P}(\mathrm{H} \mid \mathrm{V})$

The IB approach seeks $P(H \mid V)$ that minimizes:

$$
\min _{p(H \mid V)} \mathcal{L}[p(H \mid V)]=I(H, V)-\beta I(H, E)
$$

The Information Bottleneck (IB) - Numerical aspects

Unfortunately, getting the optimal $p(\mathrm{H} \mid \mathrm{V})$ in a generic setting is an NP-hard problem.

On the bright side, the same can be said about the Sd Ising model.

Recent advancements in deep learning make this numerically tractable.

$$
\min _{p(H \mid V)} \mathcal{L}[p(H \mid V)]=I(H, V)-\beta I(H, E)
$$

IB transitions/bifurcations

The moment a new feature is tracked

$$
\min _{p(H \mid V)} \mathcal{L}[p(H \mid V)]=I(H, V)-\beta I(H, E)
$$

Can be viewed as symmetry breaking transitions of the permutation symmetry of LIB w.r.t. to the elements in H Many nice analogies with Landau theory of phase transitions

IB transitions/bifurcations

The moment a new feature is tracked

$$
\min _{p(H \mid V)} \mathcal{L}[p(H \mid V)]=I(H, V)-\beta I(H, E)
$$

 $|\mathrm{H}|^{-1}$

Can be viewed as symmetry breaking transitions of the permutation symmetry of LiB w.r.t. to the elements in H Many nice analogies with Landau theory of phase transitions

Conjectured IB-relevant-operators relation (RSMI)

$$
\min _{p(H \mid V)} \mathcal{L}[p(H \mid V)]=I(H, V)-\beta I(H, E)
$$

H	Should encode relevant operators
$\mathrm{V} \longrightarrow \mathrm{E}$	

Strong compression
Strong knowledge on E

Maciej Koch Janusz, and ZR, Nature Physics 14, 578-582 (2018)

Equivalent notions of relevance in physics

Renormalisation Group

Adding $\psi(x)$ leads to an increase of its coupling constant under the RG flow

CFT

$\psi(\mathrm{x})$ and $\psi(\mathrm{y})$ correlations decay as a power law with a small exponent (2 2Δ)
In radial quantisation $\psi(0)$ generates a eigenstate of the scaling operator with large eigenvalue (Δ)

Transfer-matrix (T)
On a cylinder, given $\mathrm{T}|0>=| 0>$ is the maximal eig. of $\left.\mathrm{T}, \mathrm{T}|\psi\rangle=\mathrm{T} \psi\left|0>=e^{-4 \pi \Delta L}\right| \psi\right\rangle$

Transfer matrix reminder

- Reflects the Boltzmann-factors, on and in between two consecutive ("time"-)slices
- Yields the partition function via $Z=\operatorname{Tr}\left[\mathrm{T}^{\mathrm{L}}\right]$
- Element-wise positive (also in many quantum problems)
- Columns sum to 1 in Markov Chain case
- Large eigenvalues/eigenvectors closely related with CFT's notion of relevance:

$$
\begin{aligned}
& \mathrm{T}|0>=| 0>\quad \text { is the maximal eig. of } \mathrm{T}, \\
& \mathrm{~T} \mid 1>=\mathrm{e}^{-4 \pi \Delta \mathrm{~L} \mid 1>} \text { is the sub-leading eig. of } \mathrm{T}, \\
& |1>=\Psi| 0>\quad \Psi \text { is the leading primary operator }
\end{aligned}
$$

Linking IB and transfer matrix
 Step 1 - move our IB machinery to the cylinder

*This geometry is also easier to relate to Markov Chains, with $->$ time $->$

Linking IB and Transfer-Matrix

Step 2: Solving IB analytically in terms of transfer-matrix data

$$
r_{v}=\frac{\langle 1 \mid \partial V\rangle}{\langle 0 \mid \partial V\rangle}=\frac{\langle 0| \psi|\partial V\rangle}{\langle 0 \mid \partial V\rangle}
$$

$$
p(h= \pm 1 \mid v)=\frac{e^{h m(t) r_{v}}}{2 \cosh \left(m(t) r_{v}\right)}
$$

$$
m(t)=\sqrt{\frac{3\left(\beta-\beta_{c 1}\right)}{\left\langle r_{x}^{4}\right\rangle \beta_{c 1}}} \beta_{c 1}=e^{8 \pi \Delta_{1} \frac{L_{B}}{L}}
$$

A closer look at r_{v}

IB - RG dictionary

If IB is a microscope, how does it optics work?

- The first feature IB tracks is the "normalized" coefficients of the sub-leading eigenvector of the transfer matrix.
-The first critical β gives the scaling dimension of that operator $\quad \beta_{c 1}=e^{8 \pi \Delta_{1} \frac{L_{B}}{L}}$
- In any local theory, where a transfer-matrix can be defined, IB disregards the bulk of V .
- A means of accessing transfer-matrix eigenvectors (in any dimension) from Monte-Carlo snapshots!

Mid lecture summary

- A concrete dictionary is emerging between information theory notion of relevance (IB) and physics notion of relevance (large-transfer-matrix eigenvectors/relevant-operators)
- Several deep learning based tools allow controlled numerically solutions of IB

Statistical Physics through the Lens of Real-Space Mutual
 Information

Doruk Efe Gökmen, Zohar Ringel, Sebastian D. Huber, and Maciej Koch-Janusz
Phys. Rev. Lett. 127, 240603 - Published 6 December 2021
$\mathrm{P}(\mathrm{H} \mid \mathrm{V})$
https://github.com/RSMI-NE/RSMI-NE

Venturing into the unsolved

Gauge fluctuations \longrightarrow

Statistical mechanics of dimers on quasiperiodic tilings
Jerome Lloyd, ${ }^{1,2,3, *}$ Sounak Biswas, ${ }^{1, *}$ Steven H. Simon, ${ }^{1}$ S. A. Parameswaran, ${ }^{1}$ and Felix Flicker ${ }^{1,4}$

Gauge fluctuations \longrightarrow

? Critical

Amman Beenaker Tiling

With dimers

Criticality in Amman Beenaker (AB) dimer covers

Amman Beenaker Tiling

With dimers

Statistical mechanics of dimers on quasiperiodic tilings

Jerome Lloyd, ${ }^{1,2,3, *}$ Sounak Biswas, ${ }^{1, *}$ Steven H. Simon, ${ }^{1}$ S. A. Parameswaran, ${ }^{1}$ and Felix Flicker ${ }^{1,4}$

Scale invariance is inherent to Quasi-crystals

\bullet
8-vertices
A sublattice
V area
~ Coarse Graining Cell

Apply our approach (RSMI version) - raw outputs

V=8-vertex which coarse grains to 3-vertex

Linear DNNs for $\mathbf{P (H | V)}$

Histogram of H1 and H2

Biswas, Ringel, Flicker, Koch-Janusz - To be published

How to interpret these results?

- Find symmetries
- Examine $\mathrm{P}(\mathrm{H} \mid \mathrm{V})$

- Visualize filters when based on a linear DNN
- Find ideal input samples when based on generic DNN

- Scaling dimensions; Degeneracies; Representations

Biswas, Ringel, Flicker, Koch-Janusz - To be published
Also Biswas, Parameswaran - To be published

Conjecture - percolating paths are the coarse variables and behave as dimers

Biswas, Ringel, Flicker, Koch-Janusz - To be published

Self Dual Z2 Gauge-Higgs theory in 3d

Gauge fluctuations \longrightarrow
$\sim K^{-1}$

Apply our IB-RG approach - warm up

Gauge fluctuations \longrightarrow

1st IB transition
Energy operator
$\Delta=1.41$

Three derivatives of energy operator $\Delta=2.41$

Apply our IB-RG approach - dual point

Gauge fluctuations \longrightarrow

$1^{\text {st }}$ IB transition

$2^{\text {nd }}$ IB transition

Energy operator

A non-scalar operator with scaling dimension 2

Suspected microscopic current operator (very preliminary...)

$\mathbf{J}_{\text {o }}$ (local-configuration)
\uparrow Output

3 layer fully connected
Neural network

Oppenheim, Koch Janusz, Gazit, Ringel - To be published

Summary

- A concrete dictionary is emerging between information theory notion of relevance (IB) and physics notion of relevance (large-transfer-matrix eigenvectors/relevant-operators)
- Several deep learning based tools allow controlled numerically solutions of IB
- Applying this approach to two unsolved problems we get interesting preliminary results
- Very preliminary evidence for an emergent current operator in a self dual gauge theory.
- Note that the method also has the ability to refute the existence of such an operator.
- We find a coarse graining method for a dimers on a quasi-periodi

