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High energy photons can decay to electron-positron pairs via the nonlinear Breit-Wheeler process when colliding with an intense laser pulse.The energy spectrum of the produced particles
is broadened because of the variation of their effective mass in the course of the laser pulse. Applying a suitable chirp to the laser pulse can narrow the energy distribution of the generated
electrons and positrons. We present a scenario where a high-energy electron beam is collided with a chirped laser pulse to generate a beam of quasi-monoenergetic γ-photons, which then
decay in a second chirped, UV pulse to produce a quasi-monoenergetic source of high-energy electrons and positrons.

Nonlinear Breit-Wheeler Pair Production

We consider the scenario in which a high-energy photon with momentum ℓµ

colliding (almost) head-on with a laser pulse kµ produces a pair of electron
and positron. The interaction energy is characterised by ηℓ = k · ℓ/m2.

The angular-resolved spectrum of the produced positron can be formulated as

d3P

dsd2q⊥
= α

|I|2 + (SI∗ + IS∗ − 2F · F ∗) g(s, 1)

(2π)2η2ℓ(1− s)s
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where g(u, v) = [u2 + (v − u)2]/[4u(v − u)], s = k · p/k · ℓ, and
q⊥ = (qx, qy), qx,y = px,y/m− sℓx,y/m. For small angle collisions ℓ⊥ ≈ 0,
q⊥ ≈ γpθp(cosψ, sinψ) where θp and ψ are the polar and azimuthal angles,
and γp is the positron energy factor. The functions I , F and S are defined as
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with the exponent:
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, (2)

where πp(ϕ) is the instantaneous momentum of the positron in the field.

Slowly-varying Envelope Approximation: We now choose, as an ex-
ample, the vector potential aµ with circular polarisation:

aµ(ϕ) = mξ [0, cosΨ(ϕ), sinΨ(ϕ), 0] f (ϕ) , (3)

in which Ψ′(ϕ) = ω(ϕ)/ω0 is the chirped frequency of the pulse. At the initial
phase, f (ϕi) = 0 and ω(ϕi) = ω0. We request that

i f ′(ϕ) << 1: the variation of the pulse local amplitude is much slower than
the laser frequency

ii ω′(ϕ) << 1: the variation of the local frequency ω(ϕ) is on the same time
scale as the pulse local amplitude

The exponent (2) can be expressed approximately as

Φ(ϕ) ≈ κ(ϕ)ϕ− ζ(ϕ) sin [Ψ(ϕ)− ψ] (4)

by ignoring all the terms proportional to ω′(ϕ), f ′(ϕ), and
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.

With the Jacobi-Anger expansion:

e−iζ sin(Ψ−ψ) =
+∞∑

n=−∞
Jn(ζ)e

inψe−inΨ , (5)

where Jn(ζ) is the Bessel function of the first kind, the functions S can be
expanded approximately as a series of harmonics:

S ≈ −ξ2
+∞∑

n=−∞
einψ

∫
dϕ f2(ϕ) Jn(ζ)e

iΩ(ϕ) , (6)

where Ω(ϕ) = κ(ϕ)ϕ − nΨ(ϕ), The functions I and F can be calculated in
the same way and obtained with the exactly same exponent term.

Stationary-phase Analysis: From (6), one can see that the main contri-
bution to the functions I , F and S, and therefore to the final spectrum (1),
comes from the stationary phase point where

∂

∂ϕ
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= 0 . (7)

where m∗(ϕ) = m[1 + ξ2f2(ϕ)]1/2 is the effective mass of the produced
positrons impling a chirp in the positron energy varying with the pulse en-
velope, ds/dϕ ̸= 0 if ω(ϕ) = ω0.

Based on the stationary condition (7), this frequency chirp can be prescribed
by solving the differential equation:

dω

dϕ
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ω0
2nηℓ(1− s)s

d

dϕ
[q2⊥ + 1 + ξ2f2(ϕ)] , (8)

with the initial conditions: f (ϕi) = 0 and ω(ϕi) = ω0, and acquired with its
explicit expression:

ω(ϕ) = ω0

[
1 + ξ2f2(ϕ)/(q2⊥ + 1)

]
. (9)

From (9), one can see a remarkable fact that this chirp prescription is irrel-
evant to the harmonic order n, which indicates this spectral broadening can
be removed from all the harmonic lines at the same time. One should also
note that the complete counterbalance of the broadening can only happen at
a particular outgoing angle: |q⊥| ∼ γpθp specified by the chirp (9).

Numerical Result

We are interested in the on-axis positrons collimated in the direction of the
incoming photon q⊥ → 0 for higher yield, and thus apply the frequency chirp:

ω(ϕ) = ω0

[
1 + ξ2f2(ϕ)

]
. (10)

Inserting back into the stationary condition (7), one can then get the unchirped
positron spectrum peaked at the angle θp = 0 around the harmonic line

sn,± = [1±
√
1− 2/(nηℓ) ]/2 (11)

which can be understood as the linear BW harmonic in the collision be-
tween the incident photon ℓν and a photon with momentum nkν. We em-
ploy the laser pulse with the UV frequency ω0 = 15.5 eV and the envelope
f (ϕ) = sin2(ϕ/2N) where 0 < ϕ < 2Nπ and N = 16.

NBW: Fig. 1 depicts the narrowing of the positron angular spectra from
the chirped laser pulse benchmarked with the results from constant-frequency
pulses.

Fig. 1 Angular-energy distribution d2P/[ds d(γpθp)] of the produced
positrons via the NBW process from a high-energy photon (13.1 GeV) in
a circularly polarised laser pulse with the proposed frequency chirp: (a)
ξ = 1, and without the frequency chirp: (b) ξ = 1.75; (c) ξ = 1. The
chirped laser pulse (ξ = 1, ω(ϕ) = ω0[1+ ξ

2f2(ϕ)]) has the same energy as
the unchirped laser pulse (ξ = 1.75, ω(ϕ) = ω0).

Fig. 2 illustrates energy spectra dP/ds of the produced positrons shown in
Fig. 1 within different angular spread.

Fig. 2 Energy spectra dP/ds of the produced positrons shown in Fig. 1
within the whole angular spread: ∆θp = π (a) and a narrow acceptance:
∆θp = 32 µrad (b). The vertical dashed lines show the location of the first
three harmonics in the chirped NBW process: s2,+ = 0.80, s3,+ = 0.88 and
s4,+ = 0.91.

NLC: Fig. 3 describes the generation of quasi-monoenergetic γ-photons via
the nonlinear Compton scattering process from a chirped laser pulse colliding
with a beam of Ee = 16.5 GeV electrons [1].

Fig. 3 (a) Angular-energy distribution d2Pγ/(dr dθℓ) of the γ-photons
generated through the NLC process from a high-energy electron Ee =
16.5 GeV. (b) Energy spectrum of the emitted γ-photons within the whole
angular spread: ∆θℓ = π and a narrow acceptance: ∆θℓ = 16 µrad. The
vertical dashed lines show the location of the first two harmonics: r1 = 0.80
and r2 = 0.89, where r = k · ℓ/k · pe is the fraction of the light-front mo-
mentum taken by the scattered photon from the seed electron.

NLC+NBW: We present a two-step scenario in which a beam of quasi-
monoenergetic γ-photons is obtained from a chirped laser pulse via the NLC
process and then is used to produce electron-positron pairs in the second
chirped laser pulse to provide a quasi-monoenergetic source of positrons.

Making use of the obtained γ-ray spectrum : ργ(r) = dPγ/dr in Fig. 3 (b),
we can calculate the total number of the generated positrons:

P =
α

(2πηe)2

∫ 1

0
dt

∫ 1

t
drργ(r)h(r, t) (12)

where t = k · p/k · pe denotes the fraction of the light-front momentum trans-
ferring from the seed electron to the produced positron, and

h =

∫
d2q⊥

|I|2 + (SI∗ + IS∗ − 2F · F ∗)g(t, r)
(r − t) r t

. (13)

In Fig. 4, we plot the yield of the positrons from the on-axis γ-photons
(∆θℓ = 16 µrad) obtained through the NLC process, and the energy spread
and location shift of the main harmonic peak:
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Fig. 4 Energy distribution dP/dt of the positrons generated by the on-
axis γ-photons obtained through the NLC process of a high-energy electron
Ee = 16.5 GeV. The vertical black dashed lines denote the location of
each combined harmonic: t1,2,3,4 = (0.637, 0.700, 0.726, 0.732).(b) Ener-
gy spread and peak location of the first harmonic peak with the change
of the acceptance ∆θp. The horizontal dashed line denotes the theoretical
location of the first combined harmonic: t1.
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