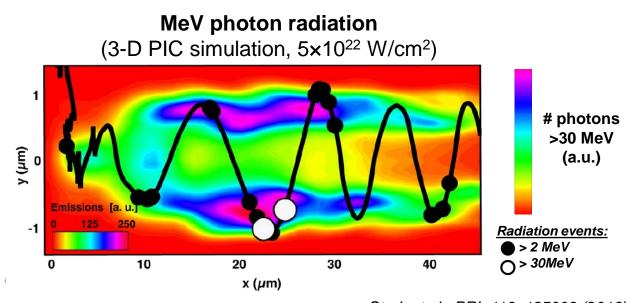

Relativistically Transparent Magnetic Filaments:


a path to megaTesla fields, direct electron acceleration, and efficient gamma radiation

Schematic of a magnetic filament

Rinderknecht et al., arXiv:2106.02662 (2021)

Stark et al., PRL 116, 185003 (2016)

Hans Rinderknecht
University of Rochester
Laboratory for Laser Energetics

4th Extremely High Intensity Laser Physics Conference Wednesday, Sept 15, 2021

E29601J1

Magnetic filaments promise a repeatable and efficient laser-driven source of MT fields, relativistic electrons, and MeV photons

- Intense lasers in relativistically transparent plasmas generate ultra-strong magnetic fields, trapping and accelerating electrons
 - Relativistic electrons in ultra-strong B-fields efficiently radiate MeV-scale photons
- Scaling laws were derived for magnetic filament radiation, and validated with 3-D PIC simulations
 - Efficiency of >10% is predicted for intensity above 6x10²¹ W/cm²
- Experiments on the Texas Petawatt laser have been performed to test these predictions
 - The predicted electron and photon signatures were observed in a subset of experiments

Collaborators

LLE/UR:

- Hans Rinderknecht
- Mingsheng Wei
- **Gerrit Bruhaug**
- Kathleen Weichmann
- John Palastro
- Jon Zuegel

UCSD:

HZDR:

ELI-NP:

Alexey Arefiev

Toma Toncian

Domenico Doria

Klaus Spohr

Tao Wang

Alejandro Laso Garcia

Texas Pettawatt (TPW)/UT Austin:

- Hernan J. Quevedo
- **Todd Ditmire**

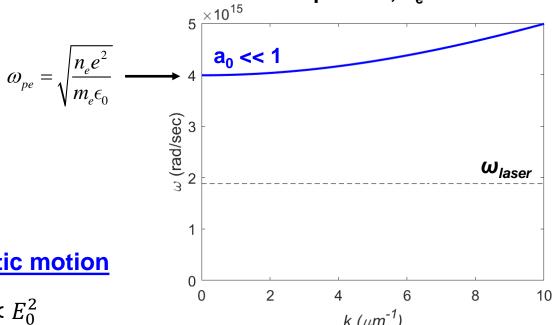
General Atomics (GA):

- **Jarrod Williams**
- **Alex Haid**

Johns Hopkins University:

Dan Stutman

Outline



1.	Relativistic laser-plasma interactions	pg. 5—9
2.	Radiation from relativistically transparent magnetic filaments	pg. 11—16
3.	Experimental results at the Texas Petawatt Laser	pg. 18—24
4.	Future prospects	pg. 26—33

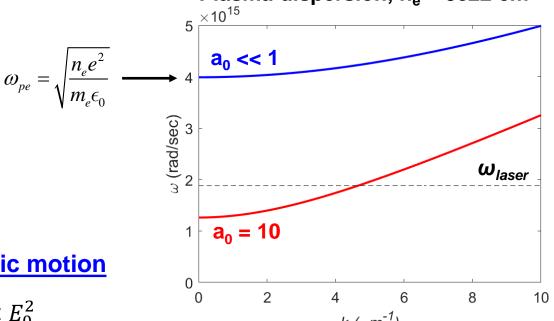
Classically, lasers can only interact with plasmas below a *critical density* at which electron waves prevent the laser entering the plasma

$$a_0 \equiv \frac{|e|E_0}{m_e\omega c}$$
 is the normalized laser amplitude: $a_0 > 1$ implies relativistic electrons
$$\approx 0.86 \frac{\lambda}{m_e\omega c}$$

Non-relativistic motion

$$\varepsilon \propto p^2 \propto E_0^2$$

$$n_e < n_{crit} = \frac{\epsilon_0 m_e}{e^2} \, \omega_{laser}^2$$


Plasma oscillations at the laser frequency reflect the incident EM radiation

Laser-plasma interactions above the critical density are possible at high intensity ($a_0 >> 1$) due to relativistic transparency

$$a_0 \equiv \frac{|e|E_0}{m_e \omega c}$$

$$\gamma = \sqrt{1 + a_0^2} \approx a_0$$

<u>Ultra-relativistic motion</u>

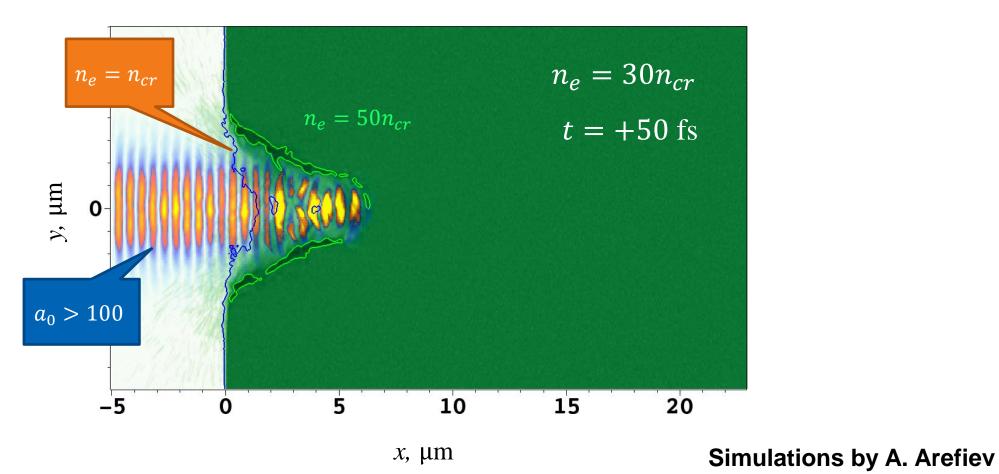
$$\varepsilon \propto p \propto E_0$$

$$n_e < a_0 n_{crit} = \frac{\epsilon_0 \gamma m_e}{e^2} \omega_{laser}^2$$

Non-relativistic motion

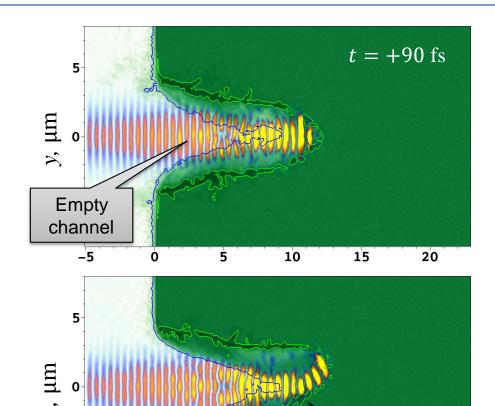
$$\varepsilon \propto p^2 \propto E_0^2$$

$$n_e < n_{crit} = \frac{\epsilon_0 m_e}{e^2} \, \omega_{laser}^2$$


Plasma oscillations at the laser frequency reflect the incident EM radiation

Relativistic plasma electrons have larger effective mass, increasing critical density

Relativistic transparency allows an intense laser pulse to propagate into an overdense plasma



However, relativistically transparent propagation is unstable

5

x, µm

10

Unstable

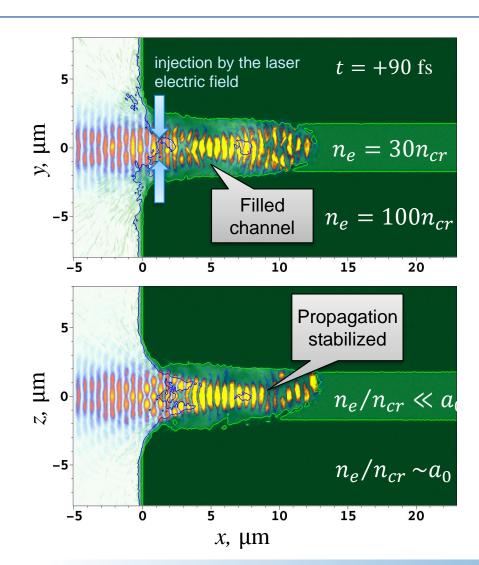
propagation

20

15

- The tightly focused laser pulse expels electrons laterally.
- The channel becomes empty, and laser pulse propagation deflects randomly.

This instability breaks the symmetry of the channel, impeding electron acceleration and subsequent high-energy photon production.


Simulations by A. Arefiev

-5

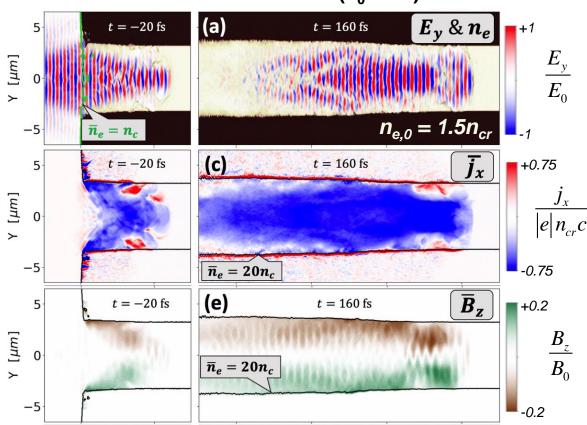
-5

Stability of interaction can be regained by using a structured target: a filled channel acts as a waveguide for the intense laser

A structured target enables an effective long-term volumetric interaction with an overdense plasma.

Simulations by A. Arefiev

Outline



1. Relativistic laser-plasma interactions	pg. 5—9
2. Radiation from relativistically transparent magnetic filaments	pg. 11—16
3. Experimental results at the Texas Petawatt Laser	pg. 18—24
4. Future prospects	pg. 26—33

In relativistically transparent magnetic filaments, the ponderomotive force drives a relativistic current, producing a strong azimuthal magnetic field

3-D PIC simulations $(a_0 = 50)^1$:

Magnetic field of current normalized to laser field:

$$\frac{B_{j}}{B_{0}} = \left(\frac{\mu_{0} j r}{2}\right) / \left(\frac{2\pi a_{0} m c}{e \lambda}\right)$$

$$= \pi \left(\frac{r}{\lambda}\right) \left(\frac{n_{e} \beta}{n_{cr} a_{0}}\right)$$

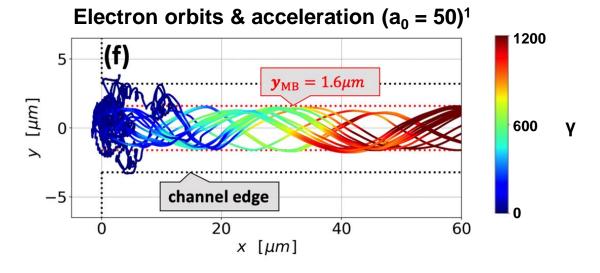
$$\equiv \pi r_{\lambda} S_{\alpha}$$

Quasi-static magnetic fields of the order of the oscillating laser field are produced and observed by electrons.

¹Z. Gong, et al., Phys. Rev. E 102, 013206 (2020)

Electrons orbit within a magnetic boundary. Those in phase with the laser are accelerated, and radiate by deflecting in the strong magnetic field.

Magnetic field of current normalized to laser field:


$$\frac{B_j}{B_0} = \pi \left(\frac{r}{\lambda}\right) \left(\frac{n_e \beta}{n_{cr} a_0}\right) \equiv \pi r_{\lambda} S_{\alpha}$$


Magnetic boundary¹:

$$\frac{r_{mb}}{\lambda} \approx \frac{1}{\pi} \sqrt{\frac{\gamma_i n_{cr}}{n_e}} \approx \frac{1}{\pi} \sqrt{\frac{f_i}{S_{\alpha}}}$$

$$\left(f_i \equiv \frac{\gamma_i}{a_0}\right)$$

The maximum magnetic field seen by electrons is limited by the *smaller* of focal radius and magnetic boundary.

Using simple assumptions for the electron acceleration and orbits, we derive scaling laws for the radiation from magnetic filaments

1: Electrons are thermal

$$f_e\left(\epsilon_e, t\right) = \frac{N_e}{T_e} \exp\left[-\frac{\epsilon_e}{T_e}\right], \text{ where } N_e = n_e \left(\pi R^2\right) \left(c\tau\right)$$

2: Electron acceleration is linear in time

$$T_{e}(t) = C_{T} a_{0} \left(\frac{ct}{\lambda}\right) mc^{2} \equiv C_{T} a_{0} t_{v} mc^{2}$$

3: Radiation is synchrotron-like

$$\frac{dP}{d\epsilon_*} = f_r \frac{4}{9} \alpha_{fsc} \frac{mc^2}{\hbar} \left(\frac{B}{B_{cr}} \right) F\left[\frac{\epsilon_*}{\epsilon_c} \right], \text{ where } \epsilon_c = \frac{3}{2} \chi \gamma mc^2, F\left[x \right] \equiv \frac{9\sqrt{3}}{8\pi} x \int_x^{\infty} K_{5/3}(z) dz \left[\int_0^{\infty} F(y) dy = 1 \right]$$

4: The laser depletes by heating electrons

$$\frac{E_e}{E_{Laser}} \le 1 \quad \to \quad t_{v, \max} \le \frac{\sqrt{\pi}}{4(\ln 2)^{3/2}} \frac{1}{C_T S_{\alpha}}. \qquad \text{We define: } t_{v, cut} \equiv f_t t_{v, \max} \approx 0.768 \frac{f_t}{C_T S_{\alpha}}$$

These assumptions have four constants: f_i, f_t, f_r, C_T and four design parameters: a_0 , S_α , R/λ , $c\tau/\lambda$

Scaling laws are calculated as moments of the radiated photon spectrum integrated over photon energy, electron energy, and time.

...if focal radius $R < r_{mb}$:

$$\frac{\left\langle \epsilon_* \right\rangle_{tot}}{m_e c^2} \approx 1.38 \times 10^{-6} \ f_t^2 a_0^3 S_\alpha^{-1} R_\lambda \lambda_{\mu m}^{-1}$$

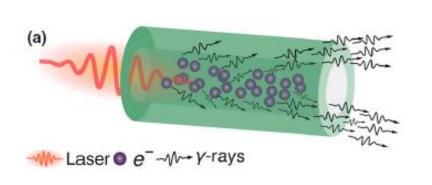
$$\frac{E_{\gamma,tot}}{m_e c^2} \approx 7.74 \times 10^2 f_r f_t^3 C_T^{-1} a_0^5 R_{\lambda}^4 \tau_{\nu}$$

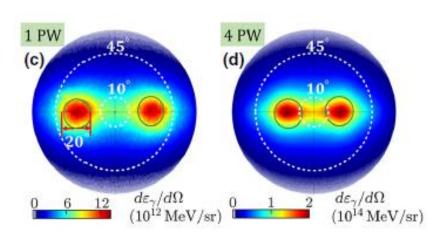
$$N_{\gamma,tot} = 5.59 \times 10^8 f_r f_t C_T^{-1} a_0^2 S_\alpha R_\lambda^3 \tau_\nu \lambda_{\mu m}$$

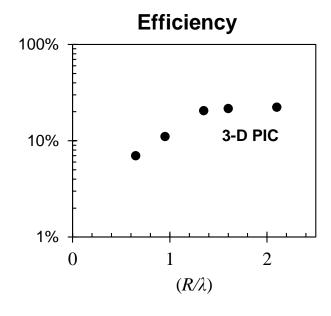
$$\eta_{\gamma} = 2.88 \times 10^{-7} f_r f_t^3 C_T^{-1} a_0^3 R_{\lambda}^2 \lambda_{\mu m}^{-1}$$

...if focal radius $R > r_{mb}$:

$$\frac{\langle \epsilon_* \rangle_{tot}}{m_e c^2} \approx 4.40 \times 10^{-7} \sqrt{f_i} f_t^2 a_0^3 S_\alpha^{-3/2} \lambda_{\mu m}^{-1}$$


$$\frac{E_{\gamma,tot}}{m_e c^2} \approx 7.84 \times 10^1 f_i f_r f_t^3 C_T^{-1} a_0^5 S_\alpha^{-1} R_\lambda^2 \tau_\nu$$


$$N_{\gamma,tot} = 1.78 \times 10^8 \sqrt{f_i} f_r f_t C_T^{-1} a_0^2 S_\alpha^{1/2} R_\lambda^2 \tau_\nu \lambda_{\mu m}$$

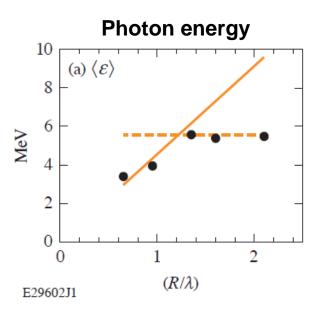

$$\eta_{\gamma} = 2.92 \times 10^{-8} f_r f_t^3 f_i C_T^{-1} a_0^3 S_{\alpha}^{-1} \lambda_{\mu m}^{-1}$$

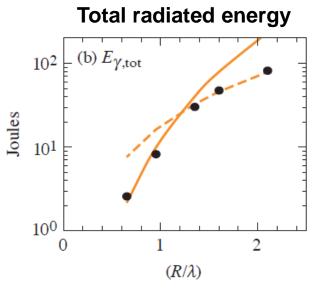
To test these scaling laws, we compared them to a series of 3-D PIC simulations that varied the focal radius

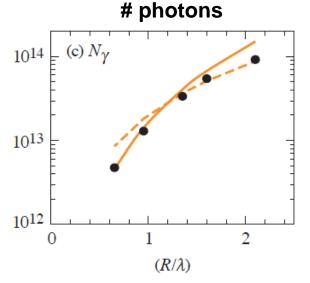
Parameters: $a_0 = 190 (5 \times 10^{22} \text{ W/cm}^2)$

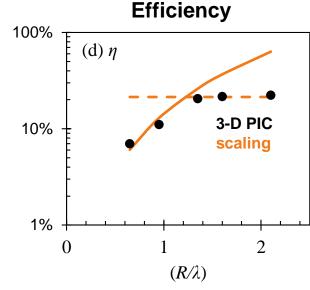
 $S_{\alpha} = 0.105 (n_{e} = 20n_{cr})$

 $R_{\lambda} = [0.65, 2.1]$


 $T_v = 10.5 (35 fs)$


T. Wang, et al., Phys. Rev. Applied 13, 054024 (2020)




The scaling laws show good agreement with 3-D PIC simulations that varied the focal radius, with reasonable constants

Parameters: $a_0 = 190 (5 \times 10^{22} \text{ W/cm}^2)$

 $S_a = 0.105 (n_e = 20n_{cr})$

 $R_{\lambda} = [0.65, 2.1]$

 $T_v = 10.5 (35 fs)$

Constants:

 $f_i = 1.533$,

3,

initial electron momentum scalar,

 $\gamma_i \equiv f_i a_0$

 $f_t = 0.311$,

cutoff time scalar,

 $t_{v,cut} \equiv f_t t_{v,max}$

 $f_r = 0.189$,

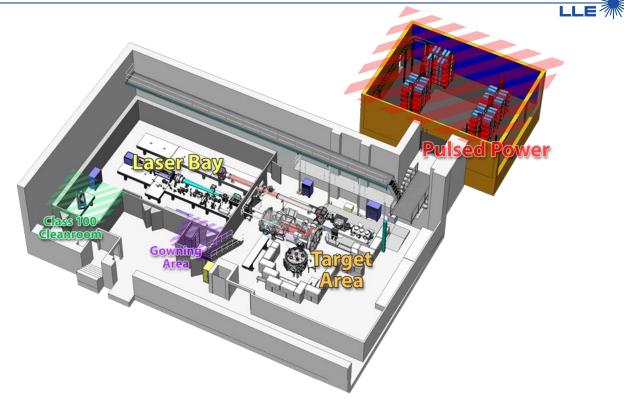
radiation duty cycle,

 $P \equiv f_r P_{\text{synch}}$

Outline

1. Relativistic laser-plasma interactions	pg. 5—9
2. Radiation from relativistically transparent magnetic filaments	pg. 11—16
3. Experimental results at the Texas Petawatt Laser	pg. 18—24
4. Future prospects	pg. 26—33

Initial experiments to study relativistically transparent magnetic filaments were performed at the Texas Petawatt Laser (TPW)



Wavelength: 800 nm

Energy: 98.8 ± 6.0 Joules

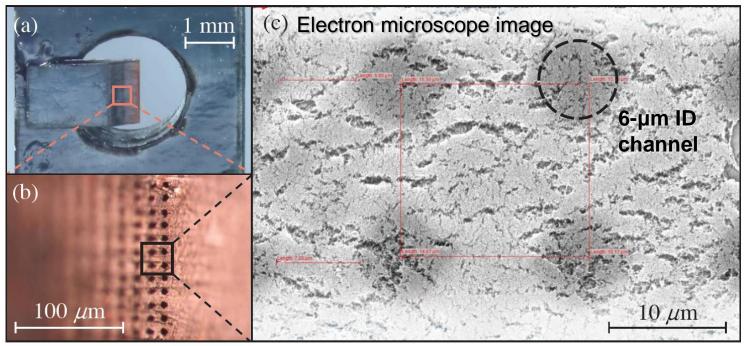
Duration: 140 fs

• Power: 694 ± 38 TW

Intensity: $[1.09 \pm 0.07] \times 10^{21} \text{ W/cm}^2 (a_0 = 29.9 \pm 1.0)$

Radius: 2.6 ± 0.12 μm (at 50% peak intensity)

Pointing: 8-µrad rms


→ 5-µm rms on target

Microchannel targets filled with low-density foam ($n_e = 5$ or 10 n_{cr}) were developed for this campaign

Channels were laser-drilled in Kapton (6-µm diameter, 15-µm separation) and filled with low-density CH foam (15 or 30 mg/cm³):

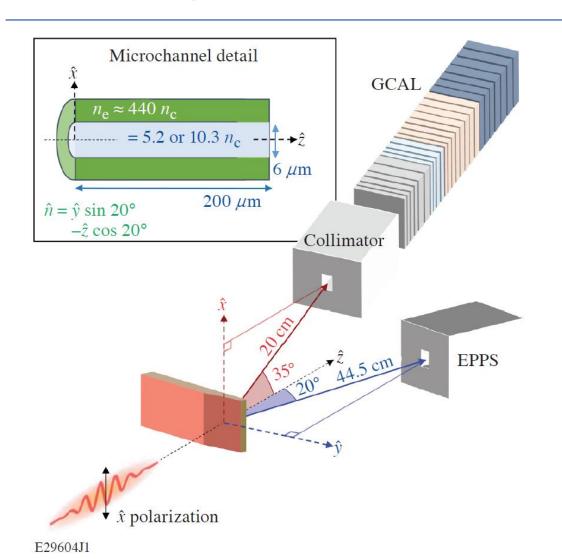
11 shots were performed with good laser-target alignment:

6-μm ID, 5-n_{cr} fill [×5]

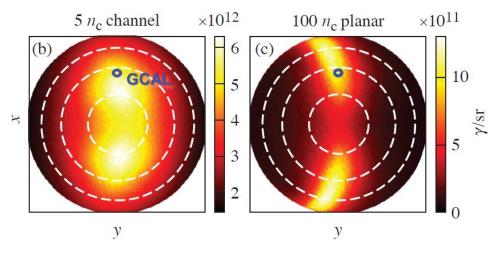
6-μm ID, 10-n_{cr} fill [**x**3]

6-µm ID, unfilled [x1]

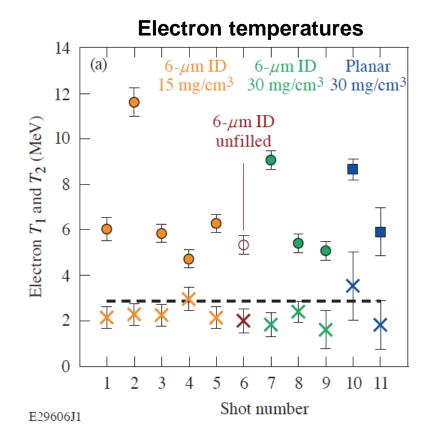
[×2] Planar 10-n_{cr} slab

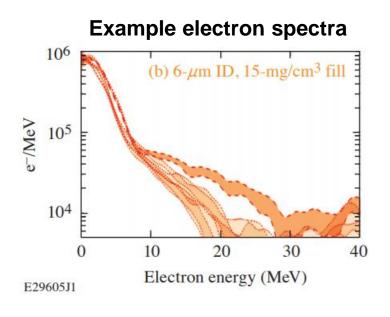

Given the pointing stability (5-µm rms), we did not expect to have channel interactions on every shot.

E29603J1



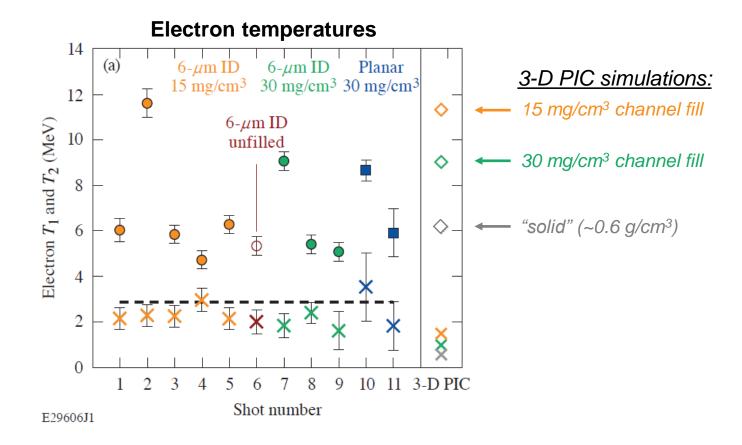
Primary diagnostics were an electron spectrometer (EPPS) and a gamma calorimeter (GCAL) in the expected radiation direction


Simulated x-ray profiles (> 10 keV)

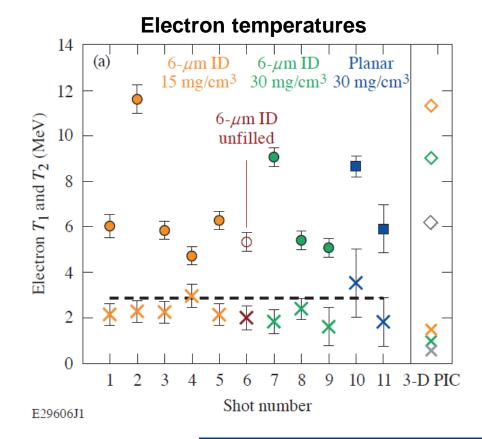


A factor of 5 difference in photon brightness is predicted between microchannel and 'solid' targets.

The 'hot' electron temperature was elevated on 2 of 8 microchannel shots

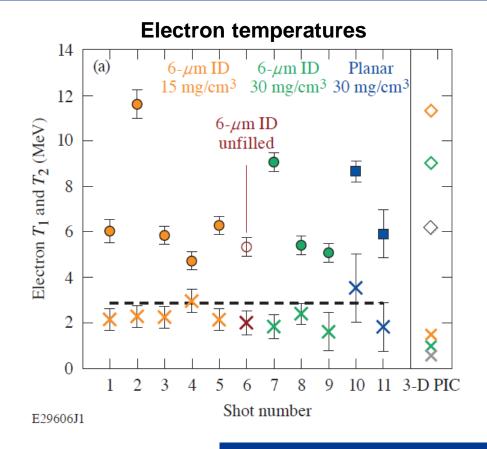


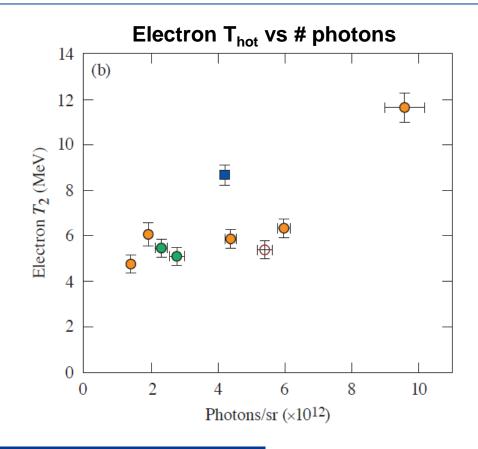
The 'hot' electron temperature was elevated on 2 of 8 microchannel shots, consistent with the predicted magnetic filament behavior



The 'hot' electron temperature was elevated on 2 of 8 microchannel shots, consistent with the predicted magnetic filament behavior

Given the pointing stability and channel size, the probability of observing N interactions is:

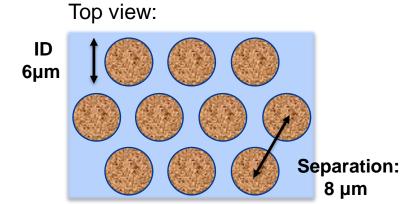

N	Probability	
0	0.21	
1	0.36	
2	0.27	
3	0.12	
4	0.03	
5+	5+ < 0.01	


We conclude that the predicted electron acceleration was observed in a subset of these experiments.

The 'hot' electron temperature was elevated on 2 of 8 microchannel shots, consistent with the predicted magnetic filament behavior

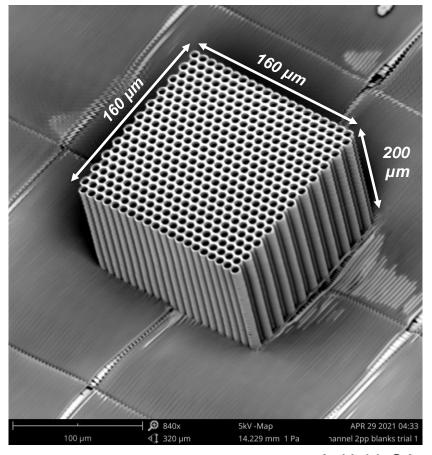
The number of photons > 10 keV also scaled with hot electron temperature as expected.

Outline



1.	Relativistic laser-plasma interactions	pg. 5—9
2.	Radiation from relativistically transparent magnetic filaments	pg. 11—16
3.	Experimental results at the Texas Petawatt Laser	pg. 18—24
4.	Future prospects	pg. 26—33

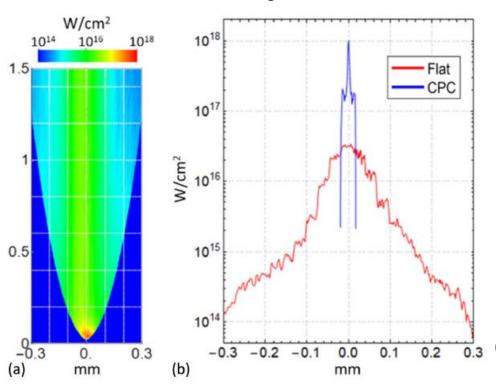
For future experiments, closely packed channel arrays have been developed to improve repeatability and control over channel properties



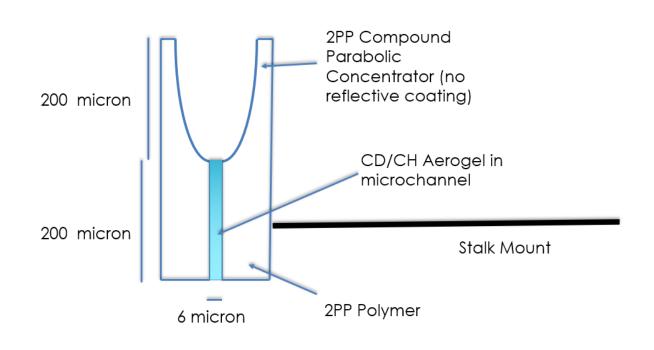
Microchannel arrays in development

- Hexagonal close-packed array (20 by 20)
- Channel length: 100 µm minimum
- Foam density: 1—5 n_{crit} ($\rho \sim 3$ —15 mg/cm³)

Photo of array produced by 2-photon polymerization:


A. Haid, GA

For future experiments, a compound parabolic concentrator (CPC) design may enable robust laser coupling to a single channel



Simulation of a CPC target for NIF-ARC

A. G. MacPhee, et al., Optica 7, 129 (2020).

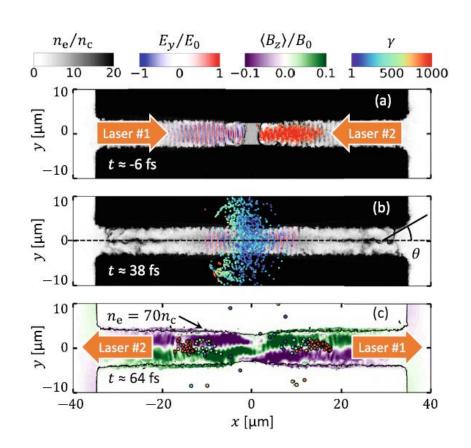
CPC microchannel concept (A. Haid, GA)

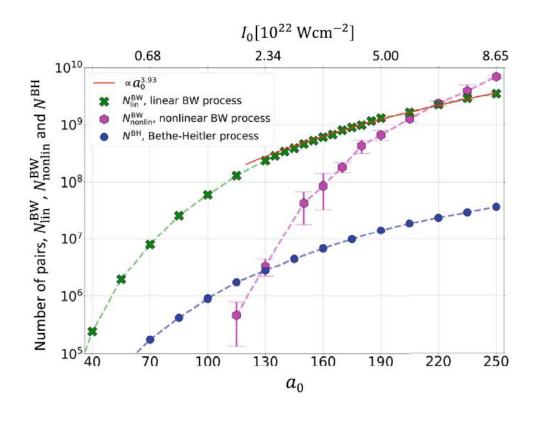
With 10-PW lasers now becoming available, magnetic filaments promise exciting opportunities for high-flux gamma-ray sources

Laser	ELI-NP†		ELI-Beamlines L4 [‡]	
λ	0.8 µm		1.057 μm	
Т	23 fs		150 fs	
Peak power	Peak power 10 PW		10 PW	
Intensity (a_0)	5×10 ²² W/cm ² (153)		5×10 ²² W/cm ² (202)	
Design choice:	$S_{\alpha} = 0.01$	$S_{\alpha} = 0.05$	$S_{\alpha} = 0.01$	$S_{\alpha} = 0.05$
Photon energy <ε₊>	68 MeV	9.2 MeV	96 MeV	19 MeV
Total energy E _{γ,tot}	111 J	51 J	797 J	727 J
# photons N_{γ}	1.0×10 ¹³	3.5×10 ¹³	5.2×10 ¹³	2.5×10 ¹⁴
Efficiency η	48%*	22%*	53%*	48%*

By varying the channel design, the photon spectrum and flux may be optimized.

[†] D. Ursescu, et al., Romanian Reports in Physics 68, S11 (2016)

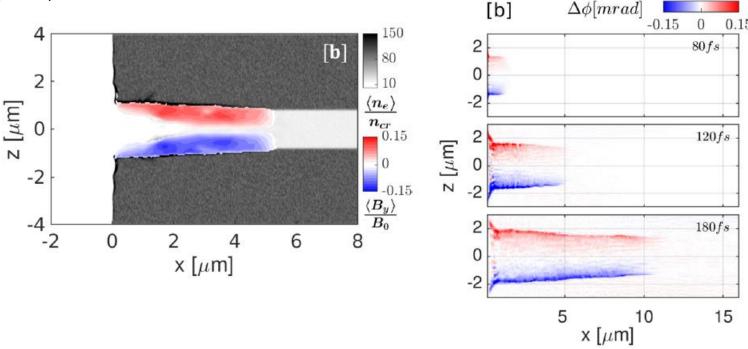

[‡] S. Weber, et al., Matter and Radiation at Extremes 2, 149 (2017)


With 10-PW lasers now becoming available, magnetic filaments promise exciting opportunities for ultraintense HED experiments

Breit-Wheeler pair production

Y. He, et al., Commun. Physics 4, 139 (2021)

With 10-PW lasers now becoming available, magnetic filaments promise exciting opportunities for ultraintense HED experiments

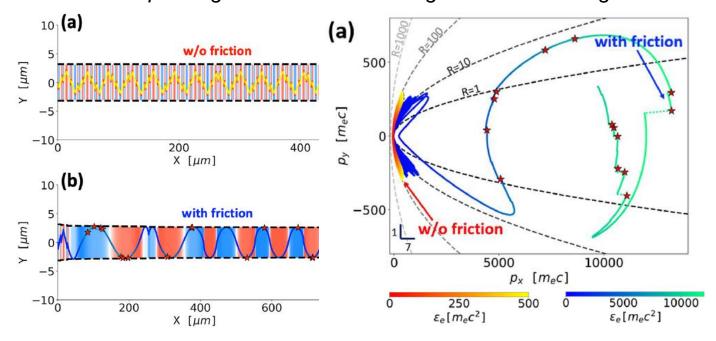

Breit-Wheeler pair production

Y. He, et al., Commun. Physics 4, 139 (2021)

MegaTesla fields in plasmas

T. Wang, et al., Phys. Plasmas 26, 013105 (2019)

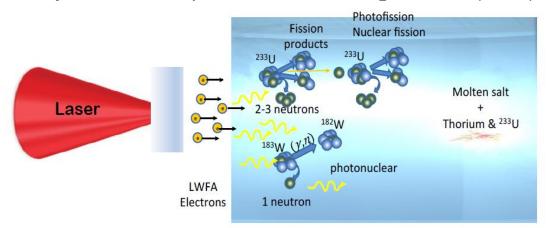
Proposed Faraday rotation measurement at EuXFEL

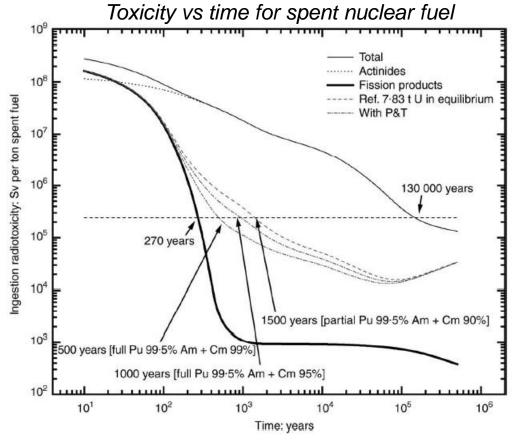


With 10-PW lasers now becoming available, magnetic filaments promise exciting opportunities for ultraintense HED experiments

- **Breit-Wheeler pair production**
- Y. He, et al., Commun. Physics 4, 139 (2021)
- MegaTesla fields in plasmas
- T. Wang, et al., Phys. Plasmas 26, 013105 (2019)
- Collective dynamics with radiation reaction
- Z. Gong, et al., Sci. Reports 9, 17181 (2019)

Radiation friction changes electron orbits: this can prevent dephasing and enables much higher electron energies



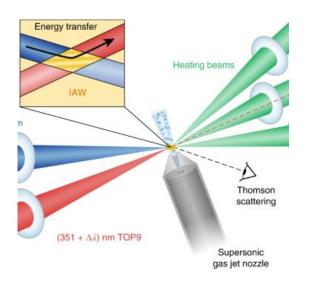


With 10-PW lasers now becoming available, magnetic filaments promise exciting opportunities for ultraintense HED experiments

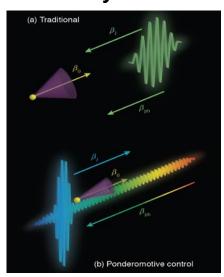
- Breit-Wheeler pair production
- Y. He, et al., Commun. Physics 4, 139 (2021)
- MegaTesla fields in plasmas
- T. Wang, et al., Phys. Plasmas 26, 013105 (2019)
- Collective dynamics with radiation reaction
- Z. Gong, et al., Sci. Reports 9, 17181 (2019)
- Photofission for spent nuclear fuel processing
- T. Tajima, et al., Uspekhi Climate Change Forum (2021)

T. Tajima, et al., Fus. Sci. Tech. 77, 251 (2021)

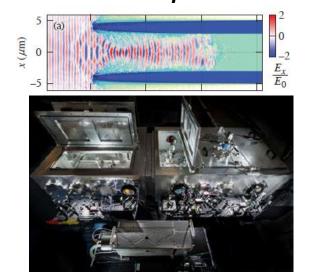
The PULSE division at LLE is a center for innovative science, impactful technology, world-class education, and engaged collaboration



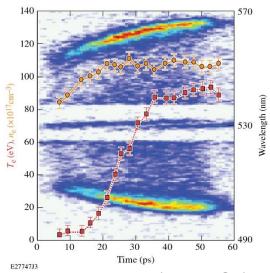
PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING


Dustin Froula (Director) dfroula@lle.rochester.edu

Laser Plasma Interactions


Dave Turnbull (GL) dpturnbull@lle.rochester.edu

Laser-Plasma **Physics**


John Palastro (GL) ipal@lle.rochester.edu

Relativistic Laser-Plasma Experiments

Hans Rinderknecht (GL) hrin@lle.rochester.edu

Ultrafast Laser-Plasma Diagnostics

Dustin Froula (acting GL) dfroula@lle.rochester.edu

Magnetic filaments promise a repeatable and efficient laser-driven source of MT fields, relativistic electrons, and MeV photons

- Intense lasers in relativistically transparent plasmas generate ultra-strong magnetic fields, trapping and accelerating electrons
 - Relativistic electrons in ultra-strong B-fields efficiently radiate MeV-scale photons
- Scaling laws were derived for magnetic filament radiation, and validated with 3-D PIC simulations
 - Efficiency of >10% is predicted for intensity above 6x10²¹ W/cm²
- **Experiments on the Texas Petawatt laser have been performed to test these predictions**
 - The predicted electron and photon signatures were observed in a subset of experiments

Appendix A: What about the Alfvén current limit? The current limit is increased for a beam with relativistic velocity.

• The Alfvén current J_A is the total current a beam of charged particles can carry as limited by self-pinching:

$$J_A = 4\pi\epsilon_0 \frac{m_e c^3}{|e|}$$

• For relativistic electrons, this limit is increased with the effective electron mass by the Lorentz factor, γ . The current density for a beam of relativistic electrons with radius R is then:

$$\pi R^2 j < \gamma J_A$$

This condition limits the filament radius:

$$\frac{R}{\lambda} < \frac{1}{\pi} \sqrt{\frac{\gamma}{\alpha}}$$

In this work we assume the electrons are sufficiently relativistic that this condition is fulfilled.

I. Y. Dodin and N. J. Fisch, Physics of Plasmas 13, 103104 (2006).

