Vacuum diffraction at finite spatio-temporal offset Ricardo Oude Weernink, Felix Karbstein

Theoretisch-Physikalisches-Institut, Friedrich-Schiller-Universität Jena Helmholtz Institute Jena

1. Introduction

FOR 2783

Prj. T1/T2

The classical Maxwell theory assumes vacua as being void. Within QED however this picture is expanded by non-linear effects related to virtual particle fluctuations, with the leading interaction describing the coupling of four photons. Typical experimental scenarios rely on pump-probe-type schemes.

Formally we can study this process on the basis of the effective Heisenberg-Euler Lagrangian $\mathcal{L}_{\text{HE}} = \mathcal{L}_{\text{MW}} + \mathcal{L}_{\text{int}}$, with classical Maxwell term $\mathcal{L}_{\text{MW}} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ and

$$\mathcal{L}_{\rm int} \simeq rac{2lpha^2}{45 m_e^4} \left[\left(F^{\mu
u}F_{\mu
u}
ight)^2 + rac{7}{4} \left({}^{\star}\!F_{\mu
u}F^{\mu
u}
ight)^2
ight] \; .$$

The corresponding zero-to-single signal photon amplitude reads

$$S(\mathbf{k}) = \langle \gamma(\mathbf{k}) | \int \mathrm{d}^4 x \, f^{\mu\nu}(x) \frac{\partial \mathcal{L}_{\mathrm{int}}}{\partial F^{\mu\nu}}(x) | 0 \rangle \; ,$$

resulting in the differential number of signal photons via Fermi's golden rule

$$\mathrm{d}^{3}N(\mathbf{k}) = \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} |S(\mathbf{k})|^{2} .$$

A recent publication [1] studied the influence of beam curvature on optical signatures at SACLA laboratory; a thorough quantitative analysis seemed beneficial.

2. Pump-Probe-Setup

We assume a pump-probe-setup as promising experiment: a strong pump field (with field profile E) imprints certain properties on the quantum vacuum, which are to be probed by an additional field (\mathfrak{E}). Both pulses are chosen to be Gaussian:

$$\mathfrak{E}(x) = \mathfrak{E}_0 e^{-\left(\frac{z-t}{T/2}\right)^2} \frac{\mathfrak{w}_0}{\mathfrak{w}(z)} e^{-\frac{x^2+y^2}{\mathfrak{w}^2(z)}} \cos\left(\omega(z-t) + \frac{\omega(x^2+y^2)}{2R(z)} - \arctan\left(\frac{z-t}{2R(z)}\right)\right)$$

The scattering matrix element then revolves around the Fourier integral:

$$S(\mathbf{k}) \propto \int \mathbf{d}^4 \mathbf{x} \, \mathfrak{E}(\mathbf{x}) \, \mathbf{E}^2(\mathbf{x}) \, \mathbf{e}^{\mathbf{i}\mathbf{k}(\hat{\mathbf{k}}\cdot\mathbf{x}-\mathbf{t})}$$

Beams are counter-propagating with the probe focussed at the origin; the pump's may be set at finite offset x_0^{μ} .

- ▷ We studied two scenarios: A SACLA test parameter set (A), the other a possible future HIBEF one (B).
- ▷ z₀-Offsets were chosen in magnitude of the probe Rayleigh range $\mathcal{O}(\mathfrak{Z}_R)$, y_0 of the probe waist \mathfrak{w}_0 .
- Additionally the beam quality factor M^2 has been implemented into the probe pulse.

Setup:	A [1]	В	
Probe Parameters:			
waist \mathfrak{w}_0 [μ m]	6	3	
pulse duration T [fs]	17	17, 220	
frequency ω [keV]	9.8	12.914	
pulse energy \mathfrak{W} [mJ]	0.47	2.07	
Pump Parameters:			
waist w ₀ [µm]	9.8	1.0	
pulse duration $ au$ [fs]	40	40	
Rayleigh range z_R [µm]	377.15	3.93	
pulse energy W [J]	2.1×10^{-4}	12.5	

$$\left(\frac{\mathrm{Z}}{\mathfrak{Z}_R}\right)$$
,

3. Setup A: Benchmark Scenario

Recreation of previous results [1]: Far-field angular distribution of signal photons $d^2 N(\varphi, \vartheta) / (d\varphi d\cos \vartheta)$, obtained from numerical evaluation using Setup A parameters with two different focal offsets. These distributions are furthermore juxtaposed to the analogue density for an infinite Rayleigh range approximation (IRRA).

4. Setup B: Offset-Related Signal Distribution Properties

▷ Signal density can only be determined numerically. A local approximation however allows for analytical approximations of the angular shift $\Delta \vartheta_{s,v}$ and signal divergence θ_s :

$$\Delta \vartheta_{\mathrm{s,y}} \simeq \frac{4M^2}{\omega \mathfrak{z}_R} \frac{\mathrm{z}_0 \mathrm{y}_0}{2\mathfrak{w}(\mathrm{z}_0)^2 + w_0^2}, \qquad heta_\mathrm{s} \simeq \frac{2}{\omega \mathfrak{w}(\mathrm{z}_0)}$$

- \triangleright For fixed $z_0 > 0$ these predict the angular offset to be linearly in and the divergence independent of y_0 , which is confirmed by numerical evaluation below.
- any form of focal shift.

 z_0/\mathfrak{z}_F

Setup A Offset: (a) (b) x₀ [μm] 0 0 0 3.7 y₀ [μm] z₀ [m] | 0.85 | 0.85 — IRRA (a) & (b) — Numerical (a) — Numerical (b) 15

$$\sqrt{ \frac{[1+2(\frac{\mathfrak{w}(z_0)}{w_0})^2]^2+(\frac{z_0M^2}{\mathfrak{Z}_{\mathrm{R}}})^2}{1+2(\frac{\mathfrak{w}(z_0)}{w_0})^2} } }$$

 \triangleright The total expected number of signal photons $N_{\rm tot}$ undergoes exponential damping from

5. Setup B: Prospective Experiment

Far-field distribution of B parameters shows region where signal surpasses background at $\vartheta_{\rm v} \gtrsim 40 \,\mu$ rad. Combined focal yz-offset generates an angular scattering assymetry affecting the respective gains. An increased probe pulse duration additionally dampens and narrows the signal.

Table shows the expected full gain N_{tot} , angular intersection points with background $|\vartheta_{\rm v,L/R}|$ and respective gains beyond these points, as well as the corresponding signal distribution assymetry.

<i>T</i> [fs]	z ₀ [m]	y ₀ [μm]	$N_{\rm tot}$	$ert artheta_{\mathrm{y,L}} ert$ [µrad]	$N_{ m tot,L}$	$ert artheta_{\mathrm{y,R}} ert \left[\mu \mathrm{rad} ight]$	$N_{ m tot,R}$	$\frac{\textit{N}_{\rm tot,R} + \mathfrak{N}_{\rm R}}{\textit{N}_{\rm tot,L} + \mathfrak{N}_{\rm L}}$
17	0	0	6.68	39.69	0.19	39.69	0.19	1
	0.29	0	3.44	40.17	0.089	40.17	0.089	1.00
	0.29	3.0	1.31	41.18	0.030	40.53	0.032	0.92
220	0	0	2.95	40.53	0.044	40.53	0.044	1
	0.29	0	1.56	41.01	0.020	41.01	0.020	1.00
	0.29	3.0	0.61	42.06	0.0067	41.31	0.0073	0.89

Conclusion and outlook

- recreating previous results [1].
- signal is exponentially damped.
- indicator on how imprecise shots affect signal gains.
- Measurement of distribution assymetry might prove useful.
- Gaussian beams etc.

7. References

Felix Karbstein and Ricardo R. Q. P. T. Oude Weernink, X-ray vacuum diffraction at finite spatio-temporal offset, arXiv:2107.09632 [hep-ph].

HELMHOLTZ Helmholtz-Institut Jena

Precise simulation of probe-pump collisions of Gaussian beams with focal offsets,

▷ We studied the influence of focal shifts on the resulting signal photon distribution: ▷ With increased focal shifts the angular distribution offset increases linearly, while total

> Further usage of signal-to-background separation by focal shifting. Otherwise an

▷ Setup expandable by choice of different beam profiles, e.g. Hermite modes, flattened

[1] Y. Seino, T. Inada, T. Yamazaki, T. Namba and S. Asai, *New estimation of the* curvature effect for the X-ray vacuum diffraction induced by an intense laser field, Prog. Theor. Exp. Phys. **2020**, 073C02 (2020), doi:10.1093/ptep/ptaa084.