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Strong Field QED in a CCF

L = ψ̄ (iγµ∂µ + eγµAµ −m)ψ − 1
4
F rad
µν F

µν
rad + eψ̄γµArad

µ ψ,

Aµ = aµϕ — strong constant crossed field (CCF)
ϕ = (kx), k2 = (ak) = 0

kµ = m{1, 0, 0, 1}— wave 4-vector,

aµ = {0, E/m, 0, 0},

Fµν = kµaν − aµkν — field strength tensor,

F ?µν =
1

2
εµνλδF

λδ

H

E

y

x

E = H

Dirac equation in a CCF: [(γp̂) + e(γA)−m]ψp(x) = 0, p̂µ = i∂µ

Solution: ψp,σ(x) = Ep(x)up,σ, (/p−m)up,σ = 0 — stable e− states in presence of a CCF

Ep(x) = eiSp(x)Σp(ϕ) — Ritus Ep-functions (matrices), orthogonal, full system;
pµ — e− momentum

Next: perturbative expansion over α = e2/4π



Elementary processes in a CCF

χ =
e

m3

√
pFFp ∼ ε

m

E

ES
∼ E′

ES
— quantum dynamical parameter

LO processes:

︸ ︷︷ ︸
Nikishov, Ritus 1964

Dominant at χ� 1 (classical radiation), χ & 1 (quantum recoil and pair creation)

At χ� 1 Wrad,cr ∝ αχ2/3

Loop corrections:

︸ ︷︷ ︸
Narozhny 1969

︸ ︷︷ ︸
Ritus 1970 ︸ ︷︷ ︸

Morozov 1981, Di Piazza 2020

At χ� 1 also scale as g = αχ2/3 !!!



The Ritus-Narozhny conjecture
See also talks by A. Ilderton and A.M. Fedotov

Narozhny (1979, 1980) observed the same scaling up to the 3-loop level.

See full classification in A. Fedotov arXiv:1608.02261; AAM, S. Meuren and A. M. Fedotov PRD 102, 053005 (2020)

The conjecture:
1 Main contribution toM(n−loop) at χ� 1 — from polarization loop insertions

2
M(n+1)

M(n)
∼ αχ2/3 (except n = 1 or 2)

3 g = αχ2/3 — effective parameter of perturbative expansion, χ ∼ ε

m

E

ES
4 g & 1 — new nonperturbative regime, the main contributions should be resummed

M
m

=

2

FIG. 1. a) Illustration of a beam-beam collider for probing the fully nonperturbative QED regime. b) 3D OSIRIS-QED
simulation of the collision of two spherical 10 nm electron beams with 125 GeV energy (blue). The fully nonperturbative QED

regime αχ2/3 ≥ 1 is experienced by 38% of the colliding particles (red). The interaction produces two dense gamma-ray beams
with 0.2 photons with Eγ ≥ 2mc2 per primary electron (yellow).

pairs. A strong electromagnetic field polarizes/ionizes
the vacuum, which therefore behaves like an electron-
positron pair plasma. As a result, the “plasma frequency
of the vacuum” changes the photon dispersion relation,
implying that a photon acquires an effective mass mγ(χ),
(see supplemental material for details). The appearance
of a photon mass induces qualitatively new phenomena
like vacuum birefringence and dichroism [28]. Pertur-
bation theory is expected to break down in the regime
mγ(χ) & m, where modifications due to quantum fluc-
tuations become of the same order as the leading-order
tree-level result (Fig. 2).

In order to determine the scaling of mγ(χ), a photon
with energy ~ωγ � mc2 is considered, which propagates
through a perpendicular electric field with magnitude E
in the laboratory frame. The χ associated with this pho-
ton is χ ∼ γE/Ecr, where γ = ~ωγ/(mc2) can be in-
terpreted as a generalized Lorentz gamma factor. As the
polarization of the quantum vacuum requires at least two
interactions (Fig. 2), it is expected that m2

γ(χ) ∼ αM2

(the plasma frequency of a medium exhibits the same
scaling in the coupling constant). Here, M ∼ eE∆t/c de-
notes the characteristic mass scale induced by the back-
ground field and ∆t represents the characteristic life time
of a virtual photon to pair transition.

The scaling of ∆t is determined by the Heisenberg
uncertainty principle ∆t∆ε ∼ ~, where the energy un-
certainty ∆ε ∼ (eE∆tc)2/(~ωγ)2 of a virtual photon
to pair transition is inferred by comparing the relativis-
tic energy-momentum relations for photons ε = pc and
electrons/positrons ε =

√
(pc)2 +m2c4 + (eE∆tc)2 ≈

pc + (eE∆tc)2/(2pc). Here, eE∆t � mc (assuming
χ � 1) is the momentum acquired in the background
field E. Notably, the resulting field-induced mass scale
M ∼ mχ1/3 is independent of m (note that χ ∼ m−3).
This suggests a new regime of light-matter interaction,
where the characteristic scales of the theory are deter-
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FIG. 2. Dressed loop expansion of the polarization operator
P (top row) and mass operatorM (bottom row). Wiggly lines
denote photons and double lines dressed electron/positron
propagators [2]. According to the Ritus-Narozhny conjecture,
the diagrams shown represent the dominant contribution at
n-loop and αχ2/3 is the true expansion parameter of strong-
field QED in the regime χ� 1 [17–19].

mined by the background field (M � m). The scaling
m2
γ(χ) ∼ αM2 ∼ αχ2/3m2 in the regime χ � 1 implies

mγ & m if αχ2/3 & 1 and thus a breakdown of perturba-
tion theory at the conjectured scale [17–19]. The same
scaling is also found for the electron/positron effective
mass by analyzing the mass operator (see supplemental
material for details).

The key challenge for reaching the fully nonperturba-
tive regime αχ2/3 & 1 in beam-beam collisions is the mit-
igation of radiative losses through beamstrahlung: the
emission of radiation as the colliding particles are bent
in the fields of the opposing bunch. This process is
characterized by four beam parameters: the transverse
σr and the longitudinal σz dimensions of the bunches
(σr = σx = σy for radially symmetric beams), the num-
ber of particles per bunch N (i.e., the total charge) and
the beam Lorentz factor γ. Lorentz invariance requires

αχ2/3
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α2χ logχ
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αnχ(2n−1)/3

conjecture



Current status of the RN conjecture

[AAM, S. Meuren and A. M. Fedotov PRD 102, 053005 (2020)]

For the electron elastic scattering amplitude:

1 Main contribution toM(n−loop) at χ� 1 — from polarization loop insertions

2
M(n+1)

M(n)
∼ αχ2/3 (except n = 1) for the bubble-type corrections

3 g = αχ2/3 is the effective PT parameter, at least for the bubble-type corrections

4 g & 1 the one-loop bubble-type corrections are resummed

M
m

=

2

FIG. 1. a) Illustration of a beam-beam collider for probing the fully nonperturbative QED regime. b) 3D OSIRIS-QED
simulation of the collision of two spherical 10 nm electron beams with 125 GeV energy (blue). The fully nonperturbative QED

regime αχ2/3 ≥ 1 is experienced by 38% of the colliding particles (red). The interaction produces two dense gamma-ray beams
with 0.2 photons with Eγ ≥ 2mc2 per primary electron (yellow).
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Consistent resummation: Dyson-Schwinger equations
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Not proven, though some evedence presented in Di Piazza & Lopez-Lopez, PRD (2020)

RN conjecture =⇒ DS equations become closed!

In order to proceed, we need to:
(i) Define structures of the exact propagators
(ii) Find a proper gauge where the proper vertex Γµ −→ ieγµ

(iii) Calculate exact mass and polarization operators
(iv) Plug everything to the DS equations and try solving them



The first step towards Dyson-Schwinger equations
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Not proven, though some evedence presented in Di Piazza & Lopez-Lopez, PRD (2020)

RN conjecture =⇒ DS equations become closed!

In this work we:
(i) Define structures of the exact propagators [Ritus 1972]
(ii) Find a proper gauge where the proper vertex Γµ −→ ieγµ

(iii) Calculate mass operator in the bubble-chain approximation and find the
dominant contribution at χ� 1

(iv) Plug everything to the DS equations and try solving them



The exact photon propagator

DS equations for the photon propagator[
l2gµν − lµlν −Πµν(l2, χl)

]
Dνλ = −iδµλ

We consider Πµν of general form

= + + + . . .1PI 1PI 1PI

Πµν(l) = Π̂(l2, χl)
(
l2gµν − lµlν

)︸ ︷︷ ︸
∝α logχl (at 1-loop)

+

2∑
i=1

Πi(l
2, χl)ε

(i)
µ (l)ε(i)ν (l)︸ ︷︷ ︸

dominant term at χl&1

Dc
µν(l) = D0(l2, χl)

[
gµν −���

���XXXXXX(1− dl)
lµlν
l2

]
+

2∑
i=1

Di(l
2, χl)ε

(i)
µ (l)ε(i)ν (l),

ε(1)
µ (l) =

eFµν l
ν

m3χl
, ε(2)

µ (l) =
eF ?µν l

ν

m3χl
, χl =

ξ(kl)

m2
, ξ2 = −e2a2/m2

After renormalization [AAM, S. Meuren, AM Fedotov PRD 2020]

D0(l2, χl) =
−i

l2 + i0
, D1,2(l2, χl) =

iΠ1,2

(l2 + i0) (l2 −Π1,2)

We plug this into the electron mass operator in order to see how Dc affects its structure



Bubble-chain mass operator

l

p q
x′ x′′

−iΣ(q, p) = Λ2(D−4)

∫
dDx′ dDx′′ Ēq(x

′′)(ieγµ)Sc0(x′′, x′)(ieγν)Ep(x
′)Dc

µν(x′′, x′)

Ep-representation
Dimensional regularization
x-representation appears to be more convenient for our calculations
Sc0(x′′, x′) — LO electron propagator

Sc0(x′′, x′) =ei(ax)Φe−i
π
2
D−2

2
Λ4−D

(4π)D/2

∫ ∞
0

ds

sD/2
exp

{
−im2s− ix

2

4s
+ i

s

12
e2 (Fx)2

}
×
[
m+

(γx)

2s
− s

3
e2(γF 2x) +

i

2
mse(σF ) +

i

2
e(γF ?x)γ5

]
,

where x = x′′ − x′, X = (x′ + x′′)/2, Φ = (kX), s — proper time

Ep-representation: Sc0(p) = ΛD−4
∫
dDxĒp(x

′′)Sc0(x′′, x′)Ep(x
′) = i

(γp) +m

p2 −m2 + i0



Exact photon propagator in the proper time representation

Fourier-transform to x = x′′ − x′

Dc
µν(x) =

Λ4−D

(2π)D

∫
dDl Dc

µν(l)e−ilx

By carrying out lD−2
⊥ -integrals and passing to l2 and proper time t = ϕ/2(kl), we arrive at

Dc
µν(x) = e−i

π
2
D−4

2
Λ4−D

(4π)D/2+1

∫ ∞
0

dt

tD/2
exp

(
−ix

2

4t

){
J0(t, χl)gµν

+
J1(t, χl)

m2ξ2ϕ2
e2 [(Fx)µ(Fx)ν − 2it(F 2)µν

]
+
J2(t, χl)

m2ξ2ϕ2
e2 [(F ?x)µ(F ?x)ν − 2it(F 2)µν

]}
where ϕ = (kx), χl =

ξϕ

2m2t
and

Jn(t, χl) = −i
∫ ∞
−∞

dl2 Dn(l2, χl)e
−il2t, n = 0, 1, 2

Jn(t, χl) smear causal θ(t)-functions: Jn(t < 0, χl) = 0

Jn(t, χl) contain all information about the pole structure of Dc
µν



Calculation of Σ(q, p)

The calculation is lengthy but doable, see details in https://arxiv.org/abs/2109.00634

We rely on computer algebra (FeynCalc), scripts are open-access (stay tuned for updates)
https://github.com/ArsenyMironov/SFQED-Loops

Main properties

Diagonality in Ep-repr: Σ(q, p) = ΛD−4(2π)Dδ(D)(q − p)Σ(p, F )

Σ ∝ αm
∫ ∞

0

ds

sD/2

∫ ∞
0

dt

tD/2
Γ eiΘ, where Γ =

2∑
n=0

[
Jn(t, χl)Γn + (Jn)′χl Γ̃n

]
— γ-matrix factor

Passing to variables (u, σ): s =
1 + u

m2χ2/3u1/3
σ, t = t(u, σ) =

s(u, σ)

u

Phase factor: Θ = −σ
3

3
− zσ, where z =

(
u

χ

)2/3 [
1− 1

u

(
p2

m2
− 1

)]
Field-free on-shell renormalization scheme: Σ(γp = m,F = 0) =

d

d(γp)
Σ(γp = m,F = 0) = 0

https://arxiv.org/abs/2109.00634
https://github.com/ArsenyMironov/SFQED-Loops


Structure of Σ

The final result is spanned by 5 γ-matrix structures

Σ(p, F ) =

2∑
n=0

[
mSn(p2, χ) + (γp)V (1)

n (p2, χ) +
e2(γF 2p)

m4χ2
V (2)
n (p2, χ)

+
e(σF )

mχ
Tn(p2, χ) +

e(γF ?p)γ5

m2χ
An(p2, χ)

]
All the structures but (γp) are O(m)

The factors Sn(p2, χ) etc are scalars. They define the asymptotic properties at χ� 1

n = 0: coincides with the one-loop mass operator [Ritus 1970]

n = 1, 2: nontrivial bubble-chain contribution



Structure of Σ

The final result is spanned by 5 γ-matrix structures

Σ(p, F ) =
2∑

n=0

[
mSn(p2, χ) + (γp)V (1)

n (p2, χ) +
e2(γF 2p)

m4χ2
V (2)
n (p2, χ)

+
e(σF )

mχ
Tn(p2, χ) +

e(γF ?p)γ5

m2χ
An(p2, χ)

]
The scalar functions (just to get an impression...), Ji = Ji (t(u, σ), χl), χl = uχ/(1 + u)

S1,2(p2, χ) =
iα

8π2

∫ ∞
0

duu

(1 + u)2

∫ ∞
0

dσ

σ
J1,2 e

−iσ
3

3
−izσ,

V
(1)
1,2 (p2, χ) = − iα

8π2

∫ ∞
0

du

(1 + u)3

∫ ∞
0

dσ

σ
J1,2 e

−iσ
3

3
−izσ,

V
(2)
1,2 (p2, χ) =

iα

16π2

∫ ∞
0

du

(1 + u)2

∫ ∞
0

dσ

{
2

(
u2 + 2u+ 2

1 + u
± 1

)(χ
u

)2/3

σJ1,2

+

[(
1 +

2

u
− u2 + u+ 2

u(1 + u)

p2

m2

)
J1,2 +

u2 + 2u+ 2

u2
J̃1,2

]
1

σ

}
e−i

σ3

3
−izσ,

T1,2(p2, χ) =
α

16π2

∫ ∞
0

du

1 + u

∫ ∞
0

dσ

(
1

1 + u
± 1

)(χ
u

)1/3

J1,2e
−iσ

3

3
−izσ,

A1,2(p2, χ) = − α

8π2

∫ ∞
0

du

(1 + u)2

∫ ∞
0

dσ

(
1

1 + u
± 1

)(χ
u

)1/3

J1,2e
−iσ

3

3
−izσ.



Bubble-chain electron propagator

DS equation for an electron in Ep-repr:

−iD(p, F )Sc(p, F ) = −i [(γp)−m− Σ(p, F )]Sc(p, F ) = 1

Solution in a general form [Ritus 1972]:

Sc(p, F ) = i

[
mS − (γp)V (1) − e2(γF 2p)

m4χ2
V (2) − e(σF )

mχ
T +

e(γF ?p)γ5

m2χ
A

]∑
±

1± (γn)γ5

2D±
,

D± = m2S2 − p2V (1) 2 +m2
(
A2 − 2V (1)V (2)

)
± 2m2

(
SA− 2TV (1)

)
where nµ = e(F ?p)µ/m

3χ, and D± = D±(p2, χ) factorize detD(p, F ) = D+D−, and

S = −1−
2∑

n=0

Sn, V
(1) = 1−

2∑
n=0

V (1)
n , V (2) = −

2∑
n=0

V (2)
n , T = −

2∑
n=0

Tn, A = −
2∑

n=0

An.

Has infinite number of physical poles D±(p2, χ) = 0

The same structures as in Σ! Asymptotic properties are defined by Sn(p2, χ) etc



Bubble-chain scattering amplitude

Ts(p) = −M(χ)/(2p0), M(χ) ≡ ūp,λΣ(p, F )|p2=m2up,λ

Applying the rules

ūp(γp)up = 2m, ūp e
2(γF 2p)up = 2m6χ2

p, ūp e(σF )up = 4sµeF ∗µνp
ν ,

we obtain

M(χ) =
2∑

n=0

{
2m2

[
Sn(m2, χ) + V (1)

n (m2, χ) + V (2)
n (m2, χ)

]
+

2e(sF ?p)

mχ

[
2Tn(m2, χ) +An(m2, χ)

]}
.

M =M(0) + δM1 + δM2 as in [AAM, S. Meuren, AM Fedotov PRD 2020]

Again, the asymptotic properties are defined by Sn(p2 = m2, χ) etc



Estimates at χ� 1

Sc(p, F ) = i

[
mS − (γp)V (1) − e2(γF 2p)

m4χ2
V (2) − e(σF )

mχ
T +

e(γF ?p)γ5

m2χ
A

]∑
±

1± (γn)γ5

2D±
,

Consider n = 1, 2. Let us find the leading contribution at χ� 1

T1,2, A1,2 ∝ χ1/3, V (2)
1,2 ∝ χ2/3 =⇒ T, A� V (2)

S1,2 ∼ V (1)
1,2

V
(1)
1,2 ∼

αΠ1,2(0, χ)

m2χ2/3

∫ 1

0

dσe−iσ
3/3+iσν/m2χ2/3

, ν = p2 −m2

At ν � m2χ2/3: V (1)
1,2 ∼ αΠ1,2(0, χ)/m2χ2/3 � α� V (2)

At ν � m2χ2/3: V (1)
1,2 ∼ αΠ1,2(0, χ)/ν, (γp)V

(1)
1,2 ∼ αΠ1,2(0, χ)

but one term in V (2)
1,2 : Ṽ (2)

1,2 ∼ α
m2χΠ1,2(0, 1) =⇒ S, V (1) � V (2)

V (2) dominates in the bubble-chain approximation

Σ(p, F ) ∝ e2(γF 2p)

m4χ2
V (2), Sc(p, F ) ∝ e2(γF 2p)

m4χ2D±
V (2), M(χ) ≈ 2m2V (2)︸ ︷︷ ︸

coincides with [AAM, SM, AMF PRD 2020]



Back to the Ritus-Narozhny conjecture

Suppose we insert 1-loop correction into a vertex connecting two bubble-chain Sc and χ� 1

Leading contribution = LO term in Γµ × LO term in Sc

If this is true, vertex insertion will enhance the total amplitude by g = αχ2/3

Γµ: dominant O(g) contribution is ∝ (γk)kµ [Morozov 1981, Di Piazza PRD 2020]

Sc: dominant contribution is ∝ (γF 2p)V (2) = −a2(γk)(kp)V (2)

HOWEVER: (γk)kµ × (−a2)(γk)(kp)V (2) ∝ (γk)2 = 0

Therefore, the LO nonvanishing contribution should be enhanced by a factor weaker than αχ2/3!

This supposition is in favour of the RN conjecture and the bubble-chain approximation (yet to be
confirmed by a full-length calculation)



Summary and outlook

= +

= +

To resum radiative corrections in the nonperturbative regime g & 1 consistently, we need to:
(i) + Define structures of the exact propagators
(ii) ? Find a proper gauge where the proper vertex Γµ −→ ieγµ

(iii) ± Calculate exact mass and polarization operators
(iv) ? Plug everything to the DS equations and try solving them

Next step: plug the bubble-chain electron propagator into Σ and Πµν

Technically, the calculations will be the same as presented here (for Σ). The structures will
remain, scalar coefficients will change

Scalar coefficients in Sc and Dc will be connected =⇒ bubble-chain DS equations

Manuscript with details: https://arxiv.org/abs/2109.00634
Open-access scripts: https://github.com/ArsenyMironov/SFQED-Loops

https://arxiv.org/abs/2109.00634
https://github.com/ArsenyMironov/SFQED-Loops


THANK YOU FOR YOUR ATTENTION!



Volkov solution,
(
/̂p+ e /A−m

)
ψp = 0

CCF: Aµ = aµϕ, ϕ = kx, k2 = ka = 0

Solution: ψp,σ(x) = Ep(x)up,σ , (/p−m)up,σ = 0

Ep(x) = eiSpΣp – Ritus Ep-function

Σp = 1 +
e

2(kp)
/k /A – spin factor (matrix 4x4)

Sp(x) = −px+
e(ap)

2(kp)
ϕ2 +

e2a2

6(kp)
ϕ3 — classical action

Properties of Ep-functions:∫
d4xEp(x)Eq(x) = (2π)4δ(4)(p− q),∫
d4p

(2π)4
Ep(x)Ep(y) = δ(4)(x− y), Ep = γ0E†pγ

0,

/̂PEp = Ep/p, /̂P = /̂p− e/A



Approximation for J -functions

Jn(t, χl) = −i
∫ ∞
−∞

dl2 Dn(l2, χl)e
−il2t, n = 0, 1, 2

J̃1,2(t, χl) =
i [Jn]′t
m2

= −i
∫ ∞
−∞

dl2
l2

m2
D1,2(l2, χl)e

−il2t

Approximation:

J1,2(t, χl) ≈ −2πiθ (Re t− teff)
[
e−iΠ1,2(0,χl)t − 1

]
,

J̃1,2(t, χl) ≈ −2πiθ (Re t− teff)
Π1,2(0, χl)

m2
e−iΠ1,2(0,χl)t,

Valid at χl & 1 (uχ & 1)
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Analytic properties of Πµν(l2, χl) in l2

Plot:
1

|l2 −Π1(l2, χl)|
in l2-plane

Π1,2 are whole transcendent
functions of l2

Main pole: l2 = −i0
Can be shown with an alternative
approach by resummation of PT
series, see [AAM, S. Meuren and
A. M. Fedotov PRD 102, 053005
(2020)]
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Bubble-chain electron propagator in proper time representation

Sc(x′′, x′) = Λ4−D
∫

dDp

(2π)D
Ep(x

′′)Sc(p, F )Ēp(x
′)

Sc(x′′, x′) =ei(ax)Φe−i
π
2
D−4

2
Λ4−D

(4π)D/2+1

∫ ∞
0

ds

sD/2
exp

{
−ix

2

4s
+ i

s

12
e2 (Fx)2

}
×
[
mS(s, ϕ) +

(γx)

2s
V(1)(s, ϕ) +

e2(γF 2x)

m2ξ2ϕ2
V(2)(s, ϕ) +

e(σF )

mξϕ
T (s, ϕ)

+
e(γF ?x)γ5

ξϕ
A(s, ϕ) +

e(γF ?x)γ5(γx)

2msξϕ
A′(s, ϕ)

]
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