Multiloop calculations in QED in a strong constant crossed field

Arseny Mironov ${ }^{1,2}$, Alexander Fedotov ${ }^{3}$

${ }^{1}$ Prokhorov General Physics Institute of RAS, Russia, Moscow
${ }^{2}$ Steklov Mathematical Institute of RAS, Russia, Moscow
${ }^{3}$ National Research Nuclear University MEPhl (Moscow Engineering Physics Institute), Russia, Moscow
https://arxiv.org/abs/2109.00634

ExHILP 2021

Strong Field QED in a CCF

- $\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}+e \gamma^{\mu} A_{\mu}-m\right) \psi-\frac{1}{4} F_{\mu \nu}^{\mathrm{rad}} F_{\mathrm{rad}}^{\mu \nu}+e \bar{\psi} \gamma^{\mu} A_{\mu}^{\mathrm{rad}} \psi$,
- $A_{\mu}=a_{\mu} \varphi$ - strong constant crossed field (CCF)

$$
\begin{aligned}
& \varphi=(k x), \quad k^{2}=(a k)=0 \\
& k^{\mu}=m\{1,0,0,1\} \text { - wave 4-vector, } \\
& a^{\mu}=\{0, E / m, 0,0\} \\
& F^{\mu \nu}=k^{\mu} a^{\nu}-a^{\mu} k^{\nu} \text { - field strength tensor, } \\
& F_{\mu \nu}^{\star}=\frac{1}{2} \varepsilon_{\mu \nu \lambda \delta} F^{\lambda \delta}
\end{aligned}
$$

- Dirac equation in a CCF: $[(\gamma \hat{p})+e(\gamma A)-m] \psi_{p}(x)=0, \quad \hat{p}^{\mu}=i \partial^{\mu}$
- Solution: $\psi_{p, \sigma}(x)=E_{p}(x) u_{p, \sigma}, \quad(\not p-m) u_{p, \sigma}=0$ - stable e^{-}states in presence of a CCF $E_{p}(x)=e^{i S_{p}(x)} \Sigma_{p}(\varphi)$ - Ritus E_{p}-functions (matrices), orthogonal, full system; $p^{\mu}-e^{-}$momentum
- Next: perturbative expansion over $\alpha=e^{2} / 4 \pi$

Elementary processes in a CCF

- $\chi=\frac{e}{m^{3}} \sqrt{p F F p} \sim \frac{\varepsilon}{m} \frac{E}{E_{S}} \sim \frac{E^{\prime}}{E_{S}}$ - quantum dynamical parameter

Dominant at $\chi \ll 1$ (classical radiation), $\chi \gtrsim 1$ (quantum recoil and pair creation) At $\chi \gg 1 \quad W_{\text {rad,cr }} \propto \alpha \chi^{2 / 3}$

- Loop corrections:

Narozhny 1969

Ritus 1970

At $\chi \gg 1$ also scale as $g=\alpha \chi^{2 / 3}$!!!

The Ritus-Narozhny conjecture

See also talks by A. Ilderton and A.M. Fedotov

Narozhny $(1979,1980)$ observed the same scaling up to the 3 -loop level.
See full classification in A. Fedotov arxi::1608.02261; AAM, S. Meuren and A. M. Fedotov PRD 102, 053005 (2020)

The conjecture:
(1) Main contribution to $\mathcal{M}^{(n-l o o p)}$ at $\chi \gg 1$ - from polarization loop insertions
(2) $\frac{\mathcal{M}^{(n+1)}}{\mathcal{M}^{(n)}} \sim \alpha \chi^{2 / 3}$ (except $n=1$ or 2)
(3) $g=\alpha \chi^{2 / 3}$ — effective parameter of perturbative expansion, $\chi \sim \frac{\varepsilon}{m} \frac{E}{E_{S}}$
(9) $g \gtrsim 1$ - new nonperturbative regime, the main contributions should be resummed

Current status of the RN conjecture

[AAM, S. Meuren and A. M. Fedotov PRD 102, 053005 (2020)]

For the electron elastic scattering amplitude:
(1) Main contribution to $\mathcal{M}^{(n-\text { loop })}$ at $\chi \gg 1$ — from polarization loop insertions
(2) $\frac{\mathcal{M}^{(n+1)}}{\mathcal{M}^{(n)}} \sim \alpha \chi^{2 / 3}$ (except $n=1$) for the bubble-type corrections
(3) $g=\alpha \chi^{2 / 3}$ is the effective PT parameter, at least for the bubble-type corrections
(0) $g \gtrsim 1$ the one-loop bubble-type corrections are resummed

Consistent resummation: Dyson-Schwinger equations

Not proven, though some evedence presented in Di Piazza \& Lopez-Lopez, PRD (2020)

- RN conjecture \Longrightarrow DS equations become closed!
- In order to proceed, we need to:
(i) Define structures of the exact propagators
(ii) Find a proper gauge where the proper vertex $\Gamma^{\mu} \longrightarrow i e \gamma^{\mu}$
(iii) Calculate exact mass and polarization operators
(iv) Plug everything to the DS equations and try solving them

The first step towards Dyson-Schwinger equations

Not proven, though some evedence presented in Di Piazza \& Lopez-Lopez, PRD (2020)

- RN conjecture \Longrightarrow DS equations become closed!
- In this work we:
(i) Define structures of the exact propagators [Ritus 1972]
(ii) Find a proper gauge where the proper vertex $\Gamma^{\mu} \longrightarrow i e \gamma^{\mu}$
(iii) Calculate mass operator in the bubble-chain approximation and find the dominant contribution at $\chi \gg 1$
(iv) Plug everything to the DS equations and try solving them

The exact photon propagator

DS equations for the photon propagator

$$
\left[l^{2} g^{\mu \nu}-l^{\mu} l^{\nu}-\Pi^{\mu \nu}\left(l^{2}, \chi_{l}\right)\right] D_{\nu \lambda}=-i \delta_{\lambda}^{\mu}
$$

We consider $\Pi^{\mu \nu}$ of general form

$$
\begin{aligned}
& \Pi_{\mu \nu}(l)=\underbrace{\widehat{\Pi}\left(l^{2}, \chi_{l}\right)\left(l^{2} g_{\mu \nu}-l_{\mu} l_{\nu}\right)}_{\alpha \alpha \log \chi_{l} \text { (at 1-loop) }}+\underbrace{\sum_{i=1}^{2} \Pi_{i}\left(l^{2}, \chi_{l}\right) \epsilon_{\mu}^{(i)}(l) \epsilon_{\nu}^{(i)}(l)}_{\text {dominant term at } \chi_{l} \gtrsim 1} \\
& D_{\mu \nu}^{c}(l)=D_{0}\left(l^{2}, \chi_{l}\right)\left[g_{\mu \nu}-\frac{\left(1-d l^{2}\right.}{l^{2}}\right]+\sum_{i=1}^{2} D_{i}\left(l^{2}, \chi_{l}\right) \epsilon_{\mu}^{(i)}(l) \epsilon_{\nu}^{(i)}(l), \\
& \epsilon_{\mu}^{(1)}(l)=\frac{e F_{\mu \nu} l^{\nu}}{m^{3} \chi_{l}}, \quad \epsilon_{\mu}^{(2)}(l)=\frac{e F_{\mu \nu}^{\star} l^{\nu}}{m^{3} \chi_{l}}, \quad \chi_{l}=\frac{\xi(k l)}{m^{2}}, \quad \xi^{2}=-e^{2} a^{2} / m^{2}
\end{aligned}
$$

After renormalization [AAM, S. Meuren, AM Fedotov PRD 2020]

$$
D_{0}\left(l^{2}, \chi_{l}\right)=\frac{-i}{l^{2}+i 0}, \quad D_{1,2}\left(l^{2}, \chi_{l}\right)=\frac{i \Pi_{1,2}}{\left(l^{2}+i 0\right)\left(l^{2}-\Pi_{1,2}\right)}
$$

We plug this into the electron mass operator in order to see how D^{c} affects its structure

Bubble-chain mass operator

$$
\begin{aligned}
& -i \Sigma(q, p)=\Lambda^{2(D-4)} \int d^{D} x^{\prime} d^{D} x^{\prime \prime} \bar{E}_{q}\left(x^{\prime \prime}\right)\left(i e \gamma^{\mu}\right) S_{0}^{c}\left(x^{\prime \prime}, x^{\prime}\right)\left(i e \gamma^{\nu}\right) E_{p}\left(x^{\prime}\right) D_{\mu \nu}^{c}\left(x^{\prime \prime}, x^{\prime}\right)
\end{aligned}
$$

- E_{p}-representation
- Dimensional regularization
- x-representation appears to be more convenient for our calculations
- $S_{0}^{c}\left(x^{\prime \prime}, x^{\prime}\right)$ - LO electron propagator

$$
\begin{aligned}
S_{0}^{c}\left(x^{\prime \prime}, x^{\prime}\right)= & e^{i(a x) \Phi} e^{-i \frac{\pi}{2} \frac{D-2}{2}} \frac{\Lambda^{4-D}}{(4 \pi)^{D / 2}} \int_{0}^{\infty} \frac{d s}{s^{D / 2}} \exp \left\{-i m^{2} s-i \frac{x^{2}}{4 s}+i \frac{s}{12} e^{2}(F x)^{2}\right\} \\
& \times\left[m+\frac{(\gamma x)}{2 s}-\frac{s}{3} e^{2}\left(\gamma F^{2} x\right)+\frac{i}{2} m s e(\sigma F)+\frac{i}{2} e\left(\gamma F^{\star} x\right) \gamma^{5}\right]
\end{aligned}
$$

where $x=x^{\prime \prime}-x^{\prime}, X=\left(x^{\prime}+x^{\prime \prime}\right) / 2, \Phi=(k X), s$ - proper time
E_{p}-representation: $S_{0}^{c}(p)=\Lambda^{D-4} \int d^{D} x \bar{E}_{p}\left(x^{\prime \prime}\right) S_{0}^{c}\left(x^{\prime \prime}, x^{\prime}\right) E_{p}\left(x^{\prime}\right)=i \frac{(\gamma p)+m}{p^{2}-m^{2}+i 0}$

Exact photon propagator in the proper time representation

Fourier-transform to $x=x^{\prime \prime}-x^{\prime}$

$$
D_{\mu \nu}^{c}(x)=\frac{\Lambda^{4-D}}{(2 \pi)^{D}} \int d^{D} l D_{\mu \nu}^{c}(l) e^{-i l x}
$$

By carrying out l_{\perp}^{D-2}-integrals and passing to l^{2} and proper time $t=\varphi / 2(k l)$, we arrive at

$$
\begin{aligned}
D_{\mu \nu}^{c}(x)=e^{-i \frac{\pi}{2} \frac{D-4}{2}} \frac{\Lambda^{4-D}}{(4 \pi)^{D / 2+1}} \int_{0}^{\infty} & \frac{d t}{t^{D / 2}} \exp \left(-i \frac{x^{2}}{4 t}\right)\left\{\mathcal{J}_{0}\left(t, \chi_{l}\right) g_{\mu \nu}\right. \\
& +\frac{\mathcal{J}_{1}\left(t, \chi_{l}\right)}{m^{2} \xi^{2} \varphi^{2}} e^{2}\left[(F x)_{\mu}(F x)_{\nu}-2 i t\left(F^{2}\right)_{\mu \nu}\right] \\
& \left.+\frac{\mathcal{J}_{2}\left(t, \chi_{l}\right)}{m^{2} \xi^{2} \varphi^{2}} e^{2}\left[\left(F^{\star} x\right)_{\mu}\left(F^{\star} x\right)_{\nu}-2 i t\left(F^{2}\right)_{\mu \nu}\right]\right\}
\end{aligned}
$$

where $\varphi=(k x), \chi_{l}=\frac{\xi \varphi}{2 m^{2} t}$ and

$$
\mathcal{J}_{n}\left(t, \chi_{l}\right)=-i \int_{-\infty}^{\infty} d l^{2} D_{n}\left(l^{2}, \chi_{l}\right) e^{-i l^{2} t}, \quad n=0,1,2
$$

- $\mathcal{J}_{n}\left(t, \chi_{l}\right)$ smear causal $\theta(t)$-functions: $\mathcal{J}_{n}\left(t<0, \chi_{l}\right)=0$
- $\mathcal{J}_{n}\left(t, \chi_{l}\right)$ contain all information about the pole structure of $D_{\mu \nu}^{c}$

The calculation is lengthy but doable, see details in https://arxiv.org/abs/2109.00634
We rely on computer algebra (FeynCalc), scripts are open-access (stay tuned for updates) https://github.com/ArsenyMironov/SFQED-Loops

Main properties

- Diagonality in E_{p}-repr: $\Sigma(q, p)=\Lambda^{D-4}(2 \pi)^{D} \delta^{(D)}(q-p) \Sigma(p, F)$
- $\Sigma \propto \alpha m \int_{0}^{\infty} \frac{d s}{s^{D / 2}} \int_{0}^{\infty} \frac{d t}{t^{D / 2}} \Gamma e^{i \Theta}$, where $\Gamma=\sum_{n=0}^{2}\left[\mathcal{J}_{n}\left(t, \chi_{l}\right) \Gamma_{n}+\left(\mathcal{J}_{n}\right)_{\chi_{l}}^{\prime} \tilde{\Gamma}_{n}\right]$ - γ-matrix factor
- Passing to variables $(u, \sigma): s=\frac{1+u}{m^{2} \chi^{2 / 3} u^{1 / 3}} \sigma, \quad t=t(u, \sigma)=\frac{s(u, \sigma)}{u}$
- Phase factor: $\Theta=-\frac{\sigma^{3}}{3}-z \sigma$, where $z=\left(\frac{u}{\chi}\right)^{2 / 3}\left[1-\frac{1}{u}\left(\frac{p^{2}}{m^{2}}-1\right)\right]$
- Field-free on-shell renormalization scheme: $\Sigma(\gamma p=m, F=0)=\frac{d}{d(\gamma p)} \Sigma(\gamma p=m, F=0)=0$

The final result is spanned by 5γ-matrix structures

$$
\begin{gathered}
\Sigma(p, F)=\sum_{n=0}^{2}\left[m S_{n}\left(p^{2}, \chi\right)+(\gamma p) V_{n}^{(1)}\left(p^{2}, \chi\right)+\frac{e^{2}\left(\gamma F^{2} p\right)}{m^{4} \chi^{2}} V_{n}^{(2)}\left(p^{2}, \chi\right)\right. \\
\left.+\frac{e(\sigma F)}{m \chi} T_{n}\left(p^{2}, \chi\right)+\frac{e\left(\gamma F^{\star} p\right) \gamma^{5}}{m^{2} \chi} A_{n}\left(p^{2}, \chi\right)\right]
\end{gathered}
$$

- All the structures but (γp) are $\mathcal{O}(m)$
- The factors $S_{n}\left(p^{2}, \chi\right)$ etc are scalars. They define the asymptotic properties at $\chi \gg 1$
- $n=0$: coincides with the one-loop mass operator [Ritus 1970]
- $n=1,2$: nontrivial bubble-chain contribution

Structure of Σ

The final result is spanned by 5γ-matrix structures

$$
\begin{gathered}
\Sigma(p, F)=\sum_{n=0}^{2}\left[m S_{n}\left(p^{2}, \chi\right)+(\gamma p) V_{n}^{(1)}\left(p^{2}, \chi\right)+\frac{e^{2}\left(\gamma F^{2} p\right)}{m^{4} \chi^{2}} V_{n}^{(2)}\left(p^{2}, \chi\right)\right. \\
\\
\left.+\frac{e(\sigma F)}{m \chi} T_{n}\left(p^{2}, \chi\right)+\frac{e\left(\gamma F^{\star} p\right) \gamma^{5}}{m^{2} \chi} A_{n}\left(p^{2}, \chi\right)\right]
\end{gathered}
$$

The scalar functions (just to get an impression...), $\mathcal{J}_{i}=\mathcal{J}_{i}\left(t(u, \sigma), \chi_{l}\right), \chi_{l}=u \chi /(1+u)$

$$
\begin{array}{r}
S_{1,2}\left(p^{2}, \chi\right)=\frac{i \alpha}{8 \pi^{2}} \int_{0}^{\infty} \frac{d u u}{(1+u)^{2}} \int_{0}^{\infty} \frac{d \sigma}{\sigma} \mathcal{J}_{1,2} e^{-i \frac{\sigma^{3}}{3}-i z \sigma}, \\
V_{1,2}^{(1)}\left(p^{2}, \chi\right)=-\frac{i \alpha}{8 \pi^{2}} \int_{0}^{\infty} \frac{d u}{(1+u)^{3}} \int_{0}^{\infty} \frac{d \sigma}{\sigma} \mathcal{J}_{1,2} e^{-i \frac{\sigma^{3}}{3}-i z \sigma}, \\
V_{1,2}^{(2)}\left(p^{2}, \chi\right)=\frac{i \alpha}{16 \pi^{2}} \int_{0}^{\infty} \frac{d u}{(1+u)^{2}} \int_{0}^{\infty} d \sigma\left\{2\left(\frac{u^{2}+2 u+2}{1+u} \pm 1\right)\left(\frac{\chi}{u}\right)^{2 / 3} \sigma \mathcal{J}_{1,2}\right. \\
\left.+\left[\left(1+\frac{2}{u}-\frac{u^{2}+u+2}{u(1+u)} \frac{p^{2}}{m^{2}}\right) \mathcal{J}_{1,2}+\frac{u^{2}+2 u+2}{u^{2}} \tilde{\mathcal{J}}_{1,2}\right] \frac{1}{\sigma}\right\} e^{-i \frac{\sigma^{3}}{3}-i z \sigma}, \\
T_{1,2}\left(p^{2}, \chi\right)=\frac{\alpha}{16 \pi^{2}} \int_{0}^{\infty} \frac{d u}{1+u} \int_{0}^{\infty} d \sigma\left(\frac{1}{1+u} \pm 1\right)\left(\frac{\chi}{u}\right)^{1 / 3} \mathcal{J}_{1,2} e^{-i \frac{\sigma^{3}}{3}-i z \sigma}, \\
A_{1,2}\left(p^{2}, \chi\right)=-\frac{\alpha}{8 \pi^{2}} \int_{0}^{\infty} \frac{d u}{(1+u)^{2}} \int_{0}^{\infty} d \sigma\left(\frac{1}{1+u} \pm 1\right)\left(\frac{\chi}{u}\right)^{1 / 3} \mathcal{J}_{1,2} e^{-i \frac{\sigma^{3}}{3}-i z \sigma} .
\end{array}
$$

Bubble-chain electron propagator

DS equation for an electron in E_{p}-repr:

$$
-i D(p, F) S^{c}(p, F)=-i[(\gamma p)-m-\Sigma(p, F)] S^{c}(p, F)=1
$$

Solution in a general form [Ritus 1972]:

$$
\begin{gathered}
S^{c}(p, F)=i\left[m S-(\gamma p) V^{(1)}-\frac{e^{2}\left(\gamma F^{2} p\right)}{m^{4} \chi^{2}} V^{(2)}-\frac{e(\sigma F)}{m \chi} T+\frac{e\left(\gamma F^{\star} p\right) \gamma^{5}}{m^{2} \chi} A\right] \sum_{ \pm} \frac{1 \pm(\gamma n) \gamma^{5}}{2 D_{ \pm}} \\
D_{ \pm}=m^{2} S^{2}-p^{2} V^{(1) 2}+m^{2}\left(A^{2}-2 V^{(1)} V^{(2)}\right) \pm 2 m^{2}\left(S A-2 T V^{(1)}\right)
\end{gathered}
$$

where $n_{\mu}=e\left(F^{\star} p\right)_{\mu} / m^{3} \chi$, and $D_{ \pm}=D_{ \pm}\left(p^{2}, \chi\right)$ factorize $\operatorname{det} D(p, F)=D_{+} D_{-}$, and

$$
S=-1-\sum_{n=0}^{2} S_{n}, V^{(1)}=1-\sum_{n=0}^{2} V_{n}^{(1)}, V^{(2)}=-\sum_{n=0}^{2} V_{n}^{(2)}, T=-\sum_{n=0}^{2} T_{n}, A=-\sum_{n=0}^{2} A_{n}
$$

Has infinite number of physical poles $D_{ \pm}\left(p^{2}, \chi\right)=0$
The same structures as in Σ ! Asymptotic properties are defined by $S_{n}\left(p^{2}, \chi\right)$ etc

Bubble-chain scattering amplitude

$$
T_{s}(p)=-\mathcal{M}(\chi) /\left(2 p^{0}\right),\left.\quad \mathcal{M}(\chi) \equiv \bar{u}_{p, \lambda} \Sigma(p, F)\right|_{p^{2}=m^{2}} u_{p, \lambda}
$$

Applying the rules

$$
\bar{u}_{p}(\gamma p) u_{p}=2 m, \quad \bar{u}_{p} e^{2}\left(\gamma F^{2} p\right) u_{p}=2 m^{6} \chi_{p}^{2}, \quad \bar{u}_{p} e(\sigma F) u_{p}=4 s^{\mu} e F_{\mu \nu}^{*} p^{\nu},
$$

we obtain

$$
\begin{gathered}
\mathcal{M}(\chi)=\sum_{n=0}^{2}\left\{2 m^{2}\left[S_{n}\left(m^{2}, \chi\right)+V_{n}^{(1)}\left(m^{2}, \chi\right)+V_{n}^{(2)}\left(m^{2}, \chi\right)\right]\right. \\
\left.+\frac{2 e\left(s F^{\star} p\right)}{m \chi}\left[2 T_{n}\left(m^{2}, \chi\right)+A_{n}\left(m^{2}, \chi\right)\right]\right\} .
\end{gathered}
$$

$\mathcal{M}=\mathcal{M}^{(0)}+\delta \mathcal{M}_{1}+\delta \mathcal{M}_{2}$ as in [AAM, S. Meuren, AM Fedotov PRD 2020]
Again, the asymptotic properties are defined by $S_{n}\left(p^{2}=m^{2}, \chi\right)$ etc

Estimates at $\chi \gg 1$

$$
S^{c}(p, F)=i\left[m S-(\gamma p) V^{(1)}-\frac{e^{2}\left(\gamma F^{2} p\right)}{m^{4} \chi^{2}} V^{(2)}-\frac{e(\sigma F)}{m \chi} T+\frac{e\left(\gamma F^{\star} p\right) \gamma^{5}}{m^{2} \chi} A\right] \sum_{ \pm} \frac{1 \pm(\gamma n) \gamma^{5}}{2 D_{ \pm}},
$$

Consider $n=1,2$. Let us find the leading contribution at $\chi \gg 1$

- $T_{1,2}, A_{1,2} \propto \chi^{1 / 3}, V_{1,2}^{(2)} \propto \chi^{2 / 3} \Longrightarrow T, A \ll V^{(2)}$
- $S_{1,2} \sim V_{1,2}^{(1)}$

$$
V_{1,2}^{(1)} \sim \frac{\alpha \Pi_{1,2}(0, \chi)}{m^{2} \chi^{2 / 3}} \int_{0}^{1} d \sigma e^{-i \sigma^{3} / 3+i \sigma \nu / m^{2} \chi^{2 / 3}}, \quad \nu=p^{2}-m^{2}
$$

- At $\nu \ll m^{2} \chi^{2 / 3}: V_{1,2}^{(1)} \sim \alpha \Pi_{1,2}(0, \chi) / m^{2} \chi^{2 / 3} \ll \alpha \ll V^{(2)}$
- At $\nu \gg m^{2} \chi^{2 / 3}: V_{1,2}^{(1)} \sim \alpha \Pi_{1,2}(0, \chi) / \nu, \quad(\gamma p) V_{1,2}^{(1)} \sim \alpha \Pi_{1,2}(0, \chi)$ but one term in $V_{1,2}^{(2)}: \tilde{V}_{1,2}^{(2)} \sim \frac{\alpha}{m^{2}} \chi \Pi_{1,2}(0,1) \Longrightarrow S, V^{(1)} \ll V^{(2)}$
- $V^{(2)}$ dominates in the bubble-chain approximation

$$
\Sigma(p, F) \propto \frac{e^{2}\left(\gamma F^{2} p\right)}{m^{4} \chi^{2}} V^{(2)}, \quad S^{c}(p, F) \propto \frac{e^{2}\left(\gamma F^{2} p\right)}{m^{4} \chi^{2} D_{ \pm}} V^{(2)}, \quad \underbrace{\mathcal{M}(\chi) \approx 2 m^{2} V^{(2)}}
$$

Back to the Ritus-Narozhny conjecture

Suppose we insert 1-loop correction into a vertex connecting two bubble-chain S^{c} and $\chi \gg 1$

- Leading contribution $=\mathrm{LO}$ term in $\Gamma^{\mu} \times \mathrm{LO}$ term in S^{c}

If this is true, vertex insertion will enhance the total amplitude by $g=\alpha \chi^{2 / 3}$

- Γ^{μ} : dominant $\mathcal{O}(g)$ contribution is $\propto(\gamma k) k^{\mu}$ [Morozov 1981, Di Piazza PRD 2020]
- S^{c} : dominant contribution is $\propto\left(\gamma F^{2} p\right) V^{(2)}=-a^{2}(\gamma k)(k p) V^{(2)}$
- HOWEVER: $(\gamma k) k^{\mu} \times\left(-a^{2}\right)(\gamma k)(k p) V^{(2)} \propto(\gamma k)^{2}=0$
- Therefore, the LO nonvanishing contribution should be enhanced by a factor weaker than $\alpha \chi^{2 / 3}$!
- This supposition is in favour of the RN conjecture and the bubble-chain approximation (yet to be confirmed by a full-length calculation)

Summary and outlook

- To resum radiative corrections in the nonperturbative regime $g \gtrsim 1$ consistently, we need to:
(i) + Define structures of the exact propagators
(ii) ? Find a proper gauge where the proper vertex $\Gamma^{\mu} \longrightarrow i e \gamma^{\mu}$
(iii) \pm Calculate exact mass and polarization operators
(iv) ? Plug everything to the DS equations and try solving them
- Next step: plug the bubble-chain electron propagator into Σ and $\Pi^{\mu \nu}$
- Technically, the calculations will be the same as presented here (for Σ). The structures will remain, scalar coefficients will change
- Scalar coefficients in S^{c} and D^{c} will be connected \Longrightarrow bubble-chain DS equations

Manuscript with details: https://arxiv.org/abs/2109.00634
Open-access scripts: https://github.com/ArsenyMironov/SFQED-Loops

THANK YOU FOR YOUR ATTENTION!

Volkov solution, $(\not p+e \mathscr{A}-m) \psi_{p}=0$

- CCF: $A^{\mu}=a^{\mu} \varphi, \quad \varphi=k x, \quad k^{2}=k a=0$
- Solution: $\psi_{p, \sigma}(x)=E_{p}(x) u_{p, \sigma}, \quad(\not p-m) u_{p, \sigma}=0$

$$
\begin{aligned}
& E_{p}(x)=e^{i S_{p}} \Sigma_{p}-\text { Ritus } E_{p} \text {-function } \\
& \Sigma_{p}=1+\frac{e}{2(k p)} \not k^{A}-\text { spin factor (matrix 4x4) } \\
& S_{p}(x)=-p x+\frac{e(a p)}{2(k p)} \varphi^{2}+\frac{e^{2} a^{2}}{6(k p)} \varphi^{3}-\text { classical action }
\end{aligned}
$$

- Properties of E_{p}-functions:

$$
\begin{aligned}
& \int d^{4} x \bar{E}_{p}(x) E_{q}(x)=(2 \pi)^{4} \delta^{(4)}(p-q), \\
& \int \frac{d^{4} p}{(2 \pi)^{4}} E_{p}(x) \bar{E}_{p}(y)=\delta^{(4)}(x-y), \quad \bar{E}_{p}=\gamma^{0} E_{p}^{\dagger} \gamma^{0}, \\
& \hat{\mathbb{P}} E_{p}=E_{p} \not p, \quad \hat{\mathbb{P}}=\hat{p}-e A
\end{aligned}
$$

Approximation for \mathcal{J}-functions

$$
\begin{aligned}
& \mathcal{J}_{n}\left(t, \chi_{l}\right)=-i \int_{-\infty}^{\infty} d l^{2} D_{n}\left(l^{2}, \chi_{l}\right) e^{-i l^{2} t}, \quad n=0,1,2 \\
& \tilde{\mathcal{J}}_{1,2}\left(t, \chi_{l}\right)=\frac{i\left[\mathcal{J}_{n}\right]_{t}^{\prime}}{m^{2}}=-i \int_{-\infty}^{\infty} d l^{2} \frac{l^{2}}{m^{2}} D_{1,2}\left(l^{2}, \chi_{l}\right) e^{-i l^{2} t}
\end{aligned}
$$

$$
\ldots--\quad \chi_{l}=10^{3} \quad---\quad \chi_{l}=10
$$

Approximation:

$\mathcal{J}_{1,2}\left(t, \chi_{l}\right) \approx-2 \pi i \theta\left(\operatorname{Re} t-t_{\text {eff }}\right)\left[e^{-i \Pi_{1,2}\left(0, \chi_{l}\right) t}-1\right]$,
$\tilde{\mathcal{J}}_{1,2}\left(t, \chi_{l}\right) \approx-2 \pi i \theta\left(\operatorname{Re} t-t_{\text {eff }}\right) \frac{\Pi_{1,2}\left(0, \chi_{l}\right)}{m^{2}} e^{-i \Pi_{1,2}\left(0, \chi_{l}\right)}$
Valid at $\chi_{l} \gtrsim 1(u \chi \gtrsim 1)$

$$
----\quad \chi_{l}=10^{4} \quad----\quad \chi_{l}=10^{2}
$$

Analytic properties of $\Pi^{\mu \nu}\left(l^{2}, \chi_{l}\right)$ in l^{2} Plot: $\frac{1}{\left|l^{2}-\Pi_{1}\left(l^{2}, \chi_{l}\right)\right|}$ in l^{2}-plane

- $\Pi_{1,2}$ are whole transcendent functions of l^{2}
- Main pole: $l^{2}=-i 0$
- Can be shown with an alternative approach by resummation of PT series, see [AAM, S. Meuren and A. M. Fedotov PRD 102, 053005 (2020)]

$$
\begin{gathered}
S^{c}\left(x^{\prime \prime}, x^{\prime}\right)=\Lambda^{4-D} \int \frac{d^{D} p}{(2 \pi)^{D}} E_{p}\left(x^{\prime \prime}\right) S^{c}(p, F) \bar{E}_{p}\left(x^{\prime}\right) \\
S^{c}\left(x^{\prime \prime}, x^{\prime}\right)=e^{i(a x) \Phi} e^{-i \frac{\pi}{2} \frac{D-4}{2}} \frac{\Lambda^{4-D}}{(4 \pi)^{D / 2+1}} \int_{0}^{\infty} \frac{d s}{s^{D / 2}} \exp \left\{-i \frac{x^{2}}{4 s}+i \frac{s}{12} e^{2}(F x)^{2}\right\} \\
\times\left[m \mathcal{S}(s, \varphi)+\frac{(\gamma x)}{2 s} \mathcal{V}^{(1)}(s, \varphi)+\frac{e^{2}\left(\gamma F^{2} x\right)}{m^{2} \xi^{2} \varphi^{2}} \mathcal{V}^{(2)}(s, \varphi)+\frac{e(\sigma F)}{m \xi \varphi} \mathcal{T}(s, \varphi)\right. \\
\left.\quad+\frac{e\left(\gamma F^{\star} x\right) \gamma^{5}}{\xi \varphi} \mathcal{A}(s, \varphi)+\frac{e\left(\gamma F^{\star} x\right) \gamma^{5}(\gamma x)}{2 m s \xi \varphi} \mathcal{A}^{\prime}(s, \varphi)\right]
\end{gathered}
$$

