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Abstract
The QED four-photon amplitude has been well-studied by many authors, and on-shell is treated in many text-
books. However, a calculation with all four photons off -shell is presently still lacking, despite of the fact that
this amplitude appears off-shell as a subprocess in many different contexts, in vacuum as well as with some
photons connecting to external fields. In the present talk we discuss the techniques used within the worldline
formalism to obtain this amplitude explicitly for both scalar and spinor QED.

1. Introduction
▶ The prediction of the positron (Dirac 1928) gave as a particular consequence the need to include non-linear

corrections to Maxwell’s theory.
▶ Light-by-light scattering appears as a purely non-linear process in QED.
▶ The four-photon amplitude appears in many processes for example: Delbrück scattering, photon splitting,

photon merging, birefringence, dichroism, the electron (or muon) anomalous magnetic moment and the
beta function.

▶ 1936 H. Euler and W. Heisenberg presented the one-loop effective action for spinor QED in a background
of constant strength from which is possible to obtain the four-photon amplitude at low energies for spinor
QED [1].

▶ 1936 V. Weisskopf presented the one-loop effective action for scalar QED in a background of constant
strength from which is possible to obtain the four-photon amplitude at low energies for scalar QED [2].

▶ 1951 R. Karplus and M. Neuman computed for the first the four-photon amplitude for arbitrary kinematics
[3].

▶ 1971 V. Costantini, B De Tollis and G. Pistoni calculated the same amplitude with two photons on-shell
and two off-shell [4].

▶ 1953 R. R. Wilson reported the first measurement of Delbrück scattering [5].
▶ 2017 LHC collaboration reported the first measurement of light-by-light scattering [6].

3. The four-photon amplitude for scalar and spinor QED
Within the worldline formalism scalar case is simpler. The four-photon amplitude for scalar QED can be written
as
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2 is the bosonic Green’s function, Ġij = ∂uiGij its first derivative, and Qscal =

Q4
scal + Q3

scal + Q2
scal + Q22

scal is a polynomial function of only Ġij’s
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i is the field strength tensor of external photons and Ġ (i1i2 · · · in) is called “bicycle”.
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Figure: Feynman diagrams for the one-loop four-photon amplitude. Here, the small bullets indicates the low energy photons.

T (i) and T (ij) are called the one- and two-tails. In the “Q-representation” we have (see [7])
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These one- and two-tails, by some IBP, can be written in terms of tensor fi making the gauge invariance manifest
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This is called the “H-representation”. The ri ’s are arbitrary vectors with the only condition rj · ki ̸= 0.
Using IBP, we can also find a better representation of the two-tail, the “short-representation”
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ĠriĠjs
kr · fi · fj · ks

ki · kj
. (6)

The previous representation allow us to write the four-photon amplitude with a minimal basis of five tensors
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which correspond exactly to the one presented in [4] where they used Ward identities.
For the spinor case, we use the “Bern-Kosower replacement rules” to obtain the spinor amplitude from the scalar
one. In this case, the replacement rule consist in multiplying the scalar amplitude by a global factor of “−2”
and applying the following “cycle replacement rule”

Ġi1i2Ġi2i3 · · · Ġini1 → Ġi1i2Ġi2i3 · · · Ġini1 − GFi1i2GFi2i3 · · ·GFini1 (8)

where GFi1i2 ≡ sign(ui1 − ui2) denotes the ‘fermionic’ worldline Green’s function.

4. Two low-energy photons
In this section, we discuss the one-loop off-shell four-photon amplitude for spinor QED with legs 3 and 4 in the
low energy limit. This amplitude is given by
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D
2
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Γ̂spin(34) =

∫ 1

0
du1

∫ 1

0
du2

∫ ∞

0
dT T 3−D

2 e−T (m2−G12k1·k2)Qspin(34)(G12) , i = 4, 3, 2, 22. (10)

Here, the integrand Qspin(34)(G12) is obtain by truncating equation (6) to the terms linear in k3 and k4, and
performing the polynomial integration in u3 and u4.
From these expressions, we computed the explicit result in terms of Ynl(x1), Eq. (16). We fix k1 = −k2 to
re-calculate the two-loop β-function and to compare this amplitude against the one obtained from the photon
propagator in a constant external field.
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Figure: Left: two-loop β-function from the four-photon amplitude. Right: photon propagator in a constant external field.

4.1 Delbrück scattering at low energies
In this section, we follow [4] conventions in order to reproduce their result for Delbrück scattering at low energies.
We consider k3 and k4 to have low-energy, on-shell and with circular polarization.
For scalar QED, we obtain
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For spinor QED, we obtain
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Spinor cross section is in agreement with [4]. Scalar cross section, to the best of our knowledge, is a new result.
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Figure: Left: Delbrück scattering. Right: three- and four-loop g − 2 corrections.

6. One low-energy photon
In this section, we present the one-loop off-shell four-photon amplitude for spinor QED with leg 4 in the low
energy limit
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The explicit result for each of these Γ̂ispin(4) is
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Permutations do not apply to sub-indices in Kn or Ynl . The previous compact form of the amplitudes is possible
due to the following definitions: The three-point function
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where k̂ij = ki · kj/m2. It is important to point out that Kn defined before has been already worked out in [8].
Furthermore, new techniques to compute these kind of integrals have emerge very recently [9].
The operators Di and “constants” ci are
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The Ynl functions are defined as a derivative of order l of the hypergeometric function 2F1
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7. Conclusions
▶ We study the off-shell four-photon amplitude with one, two or all legs in the low energy limit using the

worldline formalism.
▶ In the case of one low-energy photon, we managed to write down the final results in terms of generalized

hypergeometric functions. This is an unknown amplitude and our presentation is written in a very compact
way ready to be used for higher loop construction.

▶ The final result for the case with two low-energy photons is much simpler, and can be written in terms of
only 2F1. Here the special case where k1 = −k2 can be obtained from the vacuum polarization diagram in
a constant field after taking two photons from the background field, which provided a useful check on our
calculation. We have also used the same special case for constructing the two-loop β-functions for scalar
and spinor QED, recuperating the known results.

▶ We compute the differential cross section for Delbrück scattering at low energies obtaining new results and
exact match with the known ones.

▶ Our final goal in this project is the off-shell four-photon amplitude with arbitrary momenta, which is still in
process.

▶ We expect these results to become useful not only for one loop processes in external fields but also for
certain multi-loop calculations such as LBL contributions to g − 2.
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