Dynamically Assisted Tunneling

<u>Christian Kohlfürst¹</u>, Friedemann Queisser^{1,2} and Ralf Schützhold^{1,2}

¹Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden ²Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden

HZDR

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Time-dependent Tunneling

S. Coleman: "Every child knows..." $P \sim \exp\left[-2\int dx \sqrt{2m[V(x) - E]}/\hbar\right]$ Question: $V(x) \rightarrow V(t, x)$??? Here: $V(t, x) = V_0(x) + xV'_1(t)$ \blacktriangleright pre-acceleration \rightarrow energy mixing \rightarrow Franz-Keldysh effect

 $E \rightarrow E + \hbar \omega$ (Floquet ansatz)

W. Franz, Z. Naturforsch. **13** A, 484 (1958);

L. V. Keldysh, Sov. Phys. JETP **34**, 788 (1958). • potential deformation Adiabatic versus non-adiabatic: Büttiker-Landauer "traversal" time $\mathfrak{T} = \sqrt{m} \int dx / \sqrt{2[V(x) - E]}$ M. Büttiker and R. Landauer, PRL **49**, 1739 (1982).

Dynamically Assisted Nuclear Fusion

DRESDEN

concept

F. Queisser and R. Schützhold, Phys. Rev. C 100, 041601(R) (2019) ${}_{1}^{2}D + {}_{1}^{3}T \rightarrow {}_{2}^{4}He + {}_{0}^{1}n + 17.6 \text{ MeV}$ ${}_{1}^{1}p + {}_{5}^{11}B \rightarrow 3 \times {}_{2}^{4}He + 8.7 \text{ MeV}$ Assistance by XFEL field/pulse

Dynamically Assisted Tunneling

Potential barrier V(x) plus time-dependent electric field $\mathfrak{E}(t)$ Kramers-Henneberger displacement $m\ddot{\chi}(t) = q\mathfrak{E}(t)$ Energy mixing $\chi(t + i\mathfrak{T})$ displacement ("pushing out") $\chi(t)$ $\psi_{\text{tra}}(E) \approx \psi_E^0 \int \frac{dt}{2\pi} e^{i(E - E_{\text{in}})t - \sqrt{2mV_0}[\chi(t + i\mathfrak{T}) - \chi(t)]}$ $A_x(t) = A_0 / \cosh^2(\omega t)$ Field of α -particles?

C. Kohlfürst, F. Queisser and R. Schützhold, Phys. Rev. Research 3, 033153 (2021)

Analytical Model

Two-body Lagrangian with Coulomb (+nuclear) field and XFEL $L_{12} = \frac{m_1}{2} \dot{r}_1^2 + \frac{m_2}{2} \dot{r}_2^2 - V(|r_1 - r_2|) + (q_1 \dot{r}_1 + q_2 \dot{r}_2) \cdot A(t)$ Center-of-mass and relative coordinates with reduced mass $L = \frac{m}{2} \dot{r}^2 - V(|r|) + q_{\text{eff}} \dot{r} \cdot A(t)$ Approximate scaling symmetry \rightarrow dimension-less parameters $\eta = 2mEr_E^2 = \frac{2m}{E} \left(\frac{q_1q_2}{4\pi\epsilon_0}\right)^2, \quad \zeta = \frac{q_{\text{eff}}A}{m\omega r_E} = \frac{q_{\text{eff}}A}{mc} \frac{E}{\omega} \frac{4\pi\epsilon_0 c}{q_1q_2}$ WKB tunneling exponent $\mathcal{P} \sim \exp\{-\pi\sqrt{\eta}\}$ Scaling $E_{\text{p+B}} \leftrightarrow 20E_{\text{D+T}}$

Numerical Simulations

1D-Schrödinger solver for D+T fusion with $\omega = 1 \ {
m keV}$ and $10^{16} \ {
m V/m}$

Low-energy + opaque-barrier approximation

Triangular Barrier \rightarrow **Quantum Ratchets**

Steep incidence

Mainly energy mixing at front end

$$\psi_{\mathrm{tra}}(E) pprox \psi_E^0 \int \frac{dt}{2\pi} e^{i(E-E_{\mathrm{in}})t - \sqrt{2mV_0}\chi(t+i\mathfrak{T})}$$

Gradual incidence

Mainly displacement at rear end

$$\psi_{\mathrm{tra}}(E) \approx \psi_E^0 \int \frac{dt}{2\pi} e^{i(E-E_{\mathrm{in}})t + \sqrt{2mV_0}\chi(t)}$$

 \rightarrow quantum ratchets

Rough Scaling Analysis

Initial kinetic energy: 2 $\rm keV$, 4 $\rm keV$ and 8 $\rm keV$

Comparison: p+B fusion with E = 38 keV and pulse with $\omega = 19 \text{ keV}$ and $28 \times 10^{16} \text{ V/m}$ \rightarrow scaling behavior

Summary & Outlook

Dynamically assisted tunneling

- pre-acceleration
- energy mixing (front end)potential deformation

Length	System	Energy	Field Strength
μ m	optical lattices	peV	n.a.
nm	solids	meV	$10^{5} { m V/m}$
	atoms	eV	$10^{10} \mathrm{V/m}$
pm	nuclear fusion	keV	$10^{16} \mathrm{V/m}$
fm	lpha-decay	MeV	$10^{18} { m V/m}$

displacement (rear end)

Dynamically assisted nuclear fusion
▶ gradual incidence → displacement (?)
▶ tunneling exponent versus pre-factor
▶ ω = 1 keV and 10¹⁶ V/m
Outlook

▶ field of *α*-particles?
▶ muon-assisted fusion

Dynamically assisted tunneling in the impulse regime C. Kohlfürst, F. Queisser and R. Schützhold, Phys. Rev. Research 3, 033153 (2021)

Dynamically assisted nuclear fusionF. Queisser and R. Schützhold,Phys. Rev. C 100, 041601(R) (2019)

www.hzdr.de

ExHILP 2021, 13-17 September

c.kohlfuerst@hzdr.de