

Electron-positron pair production by an ultra-intense laser pulse focused by RFM

Tae Moon JEONG,¹ S. V. Bulanov,^{1,2} P. Valenta,^{1,3} G. Korn,¹ T. Zh. Esirkepov,² J. K. Koga,² A. S. Pirozhkov,² M. Kando,² and S. S. Bulanov⁴

¹ELI-beamlines, IoP, Czech Republic ²KPSI, QST, Japan ³Faculty of NSPE, CTU, Czech Republic ⁴LBNL, USA

September 14 2021 presented at ExHILP

Relativistic-flying Parabolic Mirror

Relativistic-flying Parabolic Mirror (RFPM)

S. V. Bulanov, et al., Phys. Rev. Lett. 91, 085001 (2003).

Most interesting feature is the capability of "**intensifying laser field toward Schwinger field**".

Schwinger Field (~ 1.32×10^{16} V/cm): critical field in QED which generate e⁺e⁻ pairs from vacuum

Other interesting features are described in

S. V. Bulanov, et al., Physics Uspekhi (2013).

- S. V. Bulanov, et al., Plasma Sources Sci. Tech. (2016).
- J. K. Koga, et al., Plasma Phys. Control. Fusion (2018).
- P. Valenta, et al., Phys. Plasmas (2020).
- T. Zh. Esirkepov, et al., Phys. Plasmas (2020).
- J. Mu, et al., Phys. Rev. E (2020).

Page:

ROPEAN UNION ropean Structural and Investing Funds perational Programme Research, velopment and Education

Basic Characteristics of RFM

Parabolic shapes in Laboratory and Boosted srames

Due to the Lorentz contraction,

in laboratory frame

Equation for parabolic surface

$$z = \frac{x^2 + y^2}{4\gamma f'} - \gamma f' + \frac{\gamma^2 - 1}{\gamma} f' + \beta ct.$$

Focal length: $\gamma f'$

in boosted (Moving) frame

Equation for parabolic surface

$$z' = \frac{(x')^{2} + (y')^{2}}{4f'} - f',$$

Focal length: f'

$$F_N = \frac{f'}{D} \ll 1$$

(Spherical focusing)

Page:

EUROPEAN UNION European Structural and Investing Funds Deprational Programme Research, Development and Education

4π -spherical focusing of RP and AP laser pulses

beamlines

Radially-Polarized (RP) Laguerre Gaussian (LG) beam

Azimuthally-Polarized (AP) Laguerre Gaussian (LG) beam

Polarization configuration

Page: 5

ational Programme Res lopment and Education

How to calculate EM field in Lab. frame

Assumption: Perfectly reflecting surface

Calculation of Focused Field

Focused laser field in \mathcal{M} frame (monochromatic)

 $\begin{array}{l} \mathbf{E}\text{-field:} \\ \vec{E}_{f}\left(x'^{\mu};\omega'\right) = \hat{\theta}' i E_{0,f}'\left(\omega'\right) a\left(\rho',\theta';\omega'\right) \exp\left(-i\omega't'\right) = \vec{E}_{\perp,f}' + \vec{E}_{\parallel,f}', \quad \longrightarrow \quad \begin{bmatrix} E_{f,x'}' \\ E_{f,y'} \\ E_{f,z'}' \end{bmatrix} = i E_{0,f}'\left(\omega'\right) a\left(\rho',\theta';\omega'\right) \exp\left(-i\omega't'\right) \begin{bmatrix} \cos\theta'\cos\phi' \\ \cos\theta'\sin\phi' \\ -\sin\theta' \end{bmatrix}, \\ \\ \mathbf{B}\text{-field:} \\ \vec{H}_{f}'\left(x'^{\mu};\omega'\right) = -\hat{\phi}' H_{0,f}'\left(\omega'\right) b\left(\rho',\theta';\omega'\right) \exp\left(-i\omega't'\right) = \vec{H}_{\parallel,f}'. \quad \longrightarrow \quad \begin{bmatrix} H_{f,x'}' \\ H_{f,y'}' \\ H_{f,z'}' \end{bmatrix} = -H_{0,f}'\left(\omega'\right) b\left(\rho',\theta';\omega'\right) \exp\left(-i\omega't'\right) \begin{bmatrix} \sin\phi' \\ -\cos\phi' \\ 0 \end{bmatrix}.$

Lorentz transformation $(\mathcal{M} \rightarrow \mathcal{L})$ for the field

 $\begin{bmatrix} E_{f,x}''(\omega')\\ E_{f,y}''(\omega') \end{bmatrix} = \begin{bmatrix} \gamma \left(E_{f,x}' + \beta B_{y}' \right)\\ \gamma \left(E_{f,y}' - \beta B_{x}' \right) \end{bmatrix} = \gamma E_{0,f}'(\omega') \exp(-i\omega't') \begin{bmatrix} ia(\rho', \theta'; \omega') \cos \theta' + \beta b(\rho', \theta'; \omega') \end{bmatrix} \begin{bmatrix} \cos \phi'\\ \sin \phi' \end{bmatrix}, \text{ (perpendicular polarization comp.)}$ $E_{f,z}'' = E_{f,z}' = -iE_{0,f}'(\omega') a(\rho', \theta'; \omega') \exp(-i\omega't') \sin \theta', \text{ (parallel polarization comp.)}$

Fourier transformation for the field of laser pulse

$$\vec{E}_{f}^{"}\left(x^{\prime\mu};t^{\prime}\right) = \int_{-\infty}^{\infty} d\omega^{\prime} \vec{E}_{f}^{"}\left(x^{\prime\mu};\omega^{\prime}\right) \exp\left(i\omega^{\prime}t^{\prime}\right) = \gamma \begin{bmatrix} \left\{i\cos\theta^{\prime}I_{a}\left(x^{\prime\mu};t^{\prime}\right) + \beta I_{b}\left(x^{\prime\mu};t^{\prime}\right)\right\}\cos\phi^{\prime}\\ \left\{i\cos\theta^{\prime}I_{a}\left(x^{\prime\mu};t^{\prime}\right) + \beta I_{b}\left(x^{\prime\mu};t^{\prime}\right)\right\}\sin\phi^{\prime}\\ -i(1/\gamma)\sin\theta^{\prime}I_{a}\left(x^{\prime\mu};t^{\prime}\right) \end{bmatrix}, \qquad I_{a}\left(x^{\prime\mu};t^{\prime}\right) = \int_{-\infty}^{\infty} d\omega^{\prime}E_{0,f}^{\prime}\left(\omega^{\prime}\right)\exp\left[-\frac{\left(\omega^{\prime}-\omega_{c}^{\prime}\right)^{2}}{\left(\Delta\omega^{\prime}\right)^{2}}\right]a(\rho^{\prime},\theta^{\prime};\omega^{\prime})\exp(i\omega^{\prime}t^{\prime}), \qquad I_{b}\left(x^{\prime\mu};t^{\prime}\right) = \int_{-\infty}^{\infty} d\omega^{\prime}E_{0,f}^{\prime}\left(\omega^{\prime}\right)\exp\left[-\frac{\left(\omega^{\prime}-\omega_{c}^{\prime}\right)^{2}}{\left(\Delta\omega^{\prime}\right)^{2}}\right]b(\rho^{\prime},\theta^{\prime};\omega^{\prime})\exp(i\omega^{\prime}t^{\prime}).$$

Page:

N UNION itructural and Investing Funds i Programme Research, nt and Education

Field expressions of the focused laser intensity

For a radially-polarized incident laser pulse

Electric field vector

$$\vec{E}_{f}''(\rho,\theta;t) = 2\pi^{2}\gamma^{3}\sqrt{\frac{3\pi}{c\varepsilon_{0}}}\left(\frac{w_{0}}{\lambda_{0}}\right)\sqrt{\mathcal{I}_{p}} \begin{bmatrix} -\left\{j_{1}\left(\frac{\omega_{C}'}{c}R\right)\cos\left(\omega_{0}'T\right)\Upsilon_{2} - j_{0}\left(\frac{\omega_{C}'}{c}R\right)\sin\left(\omega_{0}'T\right)\Upsilon_{1}\right\}\sin\phi \\ \left\{j_{1}\left(\frac{\omega_{C}'}{c}R\right)\cos\left(\omega_{0}'T\right)\Upsilon_{2} - j_{0}\left(\frac{\omega_{C}'}{c}R\right)\sin\left(\omega_{C}'T\right)\Upsilon_{1}\right\}\cos\phi \\ 0 \end{bmatrix}$$

Magnetic field vector

$$\vec{B}_{f}''(\rho,\theta;t) = \frac{2\pi^{2}\gamma^{3}}{c}\sqrt{\frac{3\pi}{c\varepsilon_{0}}}\left(\frac{w_{0}}{\lambda_{0}}\right)\sqrt{\mathcal{I}_{p}} \begin{bmatrix} \left\{-j_{0}\left(\frac{\omega_{0}'}{c}R\right)\sin\left(\omega_{0}'T\right)\Upsilon_{1}+j_{1}\left(\frac{\omega_{0}'}{c}R\right)\cos\left(\omega_{0}'T\right)\Upsilon_{2}\right\}\cos\phi\\ \left\{-j_{0}\left(\frac{\omega_{0}'}{c}R\right)\sin\left(\omega_{0}'T\right)\Upsilon_{1}+j_{1}\left(\frac{\omega_{0}'}{c}R\right)\cos\left(\omega_{0}'T\right)\Upsilon_{2}\right\}\sin\phi\\ \left(1/\gamma\right)j_{0}\left(\frac{\omega_{0}'}{c}R\right) \end{bmatrix}$$

Field strength ~ $\gamma^3 \left(\frac{w_0}{\lambda_0}\right) \mathcal{I}_p^{0.5}$ Geometrical factor: beam radius-wavelength ratio

Squared Electric Field at different Lorentz γ

e1

beamlines

Date:

Page:

Recoil effect on the reflected frequency

Consider mirror reflectance, $\ensuremath{\mathcal{R}}$

Electron density in the mirror: n_e Electron momentum: p_e (before), p_e " (after) Electron energy: \mathcal{E}_e (before), \mathcal{E}_e " (after)

Incident photon density: n_{ω}

Photon momentum: p_{ω} (before), p_{ω} " (after) Photon energy: \mathcal{E}_{ω} (before), \mathcal{E}_{ω} " (after)

Momentum conservation:

$$n_{e}p_{e} - n_{\omega}p_{\omega} = n_{e}p_{e}''\cos\theta_{e} + \mathcal{R}(\theta)n_{\omega}p_{\omega}''\cos\theta - \left[1 - \mathcal{R}(\theta)\right]n_{\omega}p_{\omega}$$

 $0 = n_e p_e'' \sin \theta_e - \mathcal{R}(\theta) n_\omega p_\omega'' \sin \theta$

Energy conservation:

$$n_{e}\mathcal{E}_{e} + n_{\omega}\mathcal{E}_{\omega} = n_{e}\mathcal{E}_{e}'' + \mathcal{R}(\theta)n_{\omega}\mathcal{E}_{\omega}'' + \left[1 - \mathcal{R}(\theta)\right]n_{\omega}\mathcal{E}_{\omega}$$

Frequency shift of the reflected wave

$$\omega'' \approx \omega \frac{\left(1+\beta\right)}{\left(1-\beta\cos\theta\right)} \left[1-\mathcal{R}\frac{\mathcal{I}_0}{\gamma n_e m_e c^3} \left(1+\cos\theta\right)^2 \exp\left(-\sin^2\theta/\sin^2\theta_0\right)\right]$$

$$\mathcal{R}\frac{\mathcal{I}_0/c}{\gamma n_e m_e c^2} \ll 1$$

Energy density of reflected EM wave Energy density of electron layer

Page:

e⁺e⁻ Pair production rate

e⁺e⁻ pair production rate for Schwinger mechanism

$$W_{ep} = \frac{e^2 E_{Sch}^2}{4\pi^3 \hbar^2 c} E_{imv} B_{inv} \operatorname{coth}\left(\pi \frac{B_{inv}}{E_{inv}}\right) e^{-\frac{\pi}{E_{inv}}}$$

Invariant fields and Poincare invariants

$$E_{imv} = \frac{\sqrt{\left(\mathcal{F}^2 + \mathcal{G}^2\right)^{1/2} - \mathcal{F}}}{E_{Sch}} \qquad B_{imv} = \frac{\sqrt{\left(\mathcal{F}^2 + \mathcal{G}^2\right)^{1/2} + \mathcal{F}}}{E_{Sch}} \qquad \mathcal{F} = \frac{c^2 B^2 - E^2}{2} \qquad \mathcal{G} = c\vec{B}\cdot\vec{E}$$

Peak strength of the focused laser field

Required intensity for reaching Schwinger intensity

(γ = 12.2, *R* ~ 0.5×γ⁻³, λ₀ = 0.2 μm, w₀ = 156 μm)

e⁺e⁻ pair production rate with spatio-temporal distribution

$$W_{ep} \approx \mathcal{R} \cdot 12\pi^2 \alpha \gamma^4 \left(\frac{w_0}{\lambda_0}\right)^2 \left(\frac{\mathcal{I}_p}{\hbar c}\right) \left(-j_{\{0-1\}}^2\right) \exp\left[-\frac{1}{\gamma^2} \frac{\lambda_0}{w_0} \frac{E_{Sch}/E_p}{\sqrt{6\pi^3} \sqrt{-j_{\{0-1\}}^2}}\right]$$

Page:

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

e⁺e⁻ Pair production under relativistic flying laser focus beamlines (a) 4th harmonic, TM-mode (c) 3.5 fs, 180 TW laser pulse 10 RLF1 RLF2 Number of e⁺e⁻ pairs produced RFPM1 RFPM2 $\gamma = 12.2$ $\gamma = 12.2$ D = 0.316 mmD = 0.316 mm1 Two RLFs collide R=0.5γ⁻³ Separation between mirrors = ~ 0.8 mm at a time of reflection 0.1 t=t_d/2 - 20∆t $t = t_d/2 + 20 \Delta t$ $t=t_d/2$ (b) 3.0×1045 Production rate 3.0×1045 et al 3.0×1045 et al -9-2 Production r *w* (m⁻³s⁻¹) 2^{.9,} W Production r W (m⁻³s⁻¹) 0.01 130 150 170 190 210 230 0 0 74 nm Source laser power (TW) 74 nm 74 nm 6.7 nm 6.7 nm 6.7 nm 87.4 nm 87.4 nm

Date:

___Page:

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Conclusion

- Mathematical expression for the laser focus formed by the relativistic-flying parabolic mirror (RFPM) was derived.
- Frequency shift, Field enhancement, and Shortening of pulse duration are examined.
- e⁺e⁻ pair production is investigated using the field expression obtained by the relativistic flying parabolic mirror.

Thank you for your attention!!

