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ВведениеOriginal idea of LCFA

2

• If 𝑎0 =
𝑒𝐸

𝑚𝜔
≫ 1, then the external field can be considered as constant, 

since the formation length of the photon emission ~𝜆/𝑎0

• If the particle is fast (𝛾 ≫ 1), then in its proper reference frame the external 
field is crossed (𝑬 ⊥ 𝑩, 𝐸 = 𝐵)

• 𝑊𝑒→𝑒𝛾 ≈ 𝑊𝐶𝐶𝐹 𝜒 , the probability can be approximated by CCF probability, 
which depends on the single QED parameter 𝜒

Compton scattering (photon emission) in a strong field

𝑬

𝑩

A.I. Nikishov and V.I. Ritus, Sov. Phys. JETP 19, 529 (1964),
V.I. Ritus, Journal of Soviet Laser Research 6, 497-617 (1985).

𝜒 =
𝑒 − 𝐹𝜇𝜈𝑝

𝜈 2

𝑚3



ВведениеMotivation
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Standing wave:
in B node 

𝑩 = 0, 𝑬 = 𝑬(𝑡)

𝑑𝑃𝐿𝐶𝐹𝐴

𝑑𝑢
= −

𝑒2𝑚2𝑐

4 1 + 𝑢 2
Ai1 𝑧 +

2

𝑧
Ai′ 𝑧 , 𝑧 =

𝜘

𝜒𝜒′

2
3

, 𝑢 =
𝜘

𝜒′

Colliding pulses are beneficial for cascades

• LCFA is used in almost all the codes, where strong field QED is 
implemented

• It is crucial to determine, when it fails and how to correct it

• LCFA has been studied mainly for plain wave like fields

• We consider arbitrary time-dependent electric field 𝑬 𝑡 = −𝑨′(𝑡)



NCS probability in scalar QED

emission probability per 4-volume

partial emission amplitude (absorption of s photons) –
we need its square to obtain the probability distribution

particle energy averaged over field period
photon wave vector

WKB wave functions

Stationary phase approximation

ሶ𝑓 𝑡0 = 0 ℰ 𝑡0 − ℰ′ 𝑡0 − 𝑘 = 0

Φ𝑊𝐾𝐵
±

(𝑡) =
𝐶

2ℰ(𝑡)
𝑒∓

𝑖
𝜔 ∞−

𝑡
ℰ 𝑡′ 𝑑𝑡′+𝑖𝒑𝒓 ℰ 𝑡 = 𝑚2 + 𝑷2(𝑡), 𝑷(𝑡) = 𝒑 − 𝑒𝑨(𝑡)

𝑃𝜇 𝑡 = ℰ 𝑡 , 𝑷 𝑡𝑓 𝑡 =
𝑖

𝜔
𝑘𝑡 + න

−∞

𝑡

ℰ′ 𝑡′ 𝑑𝑡′ −න
−∞

𝑡

ℰ 𝑡′ 𝑑𝑡′ , ℎ𝜇 𝑡 =
𝑃𝜇 𝑡

ℰ 𝑡 ℰ′ 𝑡

𝑚2 + 𝑃∥
2(𝑡0) + 𝑃⊥

2(𝑡0) − 𝑚2 + (𝑃∥(𝑡0) − 𝑘)2+𝑃⊥
2(𝑡0) − 𝑘 = 0

𝒌
𝑷∥𝑷⊥

𝑷

expand all vectors to parallel 
and transverse components 
(with respect to 𝒌)

𝑷⊥
2 𝑡0 = −𝑚2



𝑷⊥ 𝑡1 ≈ 𝑃 𝑡1 cos 𝜃

𝑬⊥(𝑡1)
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Amplitude calculation

𝒌

𝑷∥𝑷⊥

𝑷 𝑡0 = 𝑡1 + 𝑖𝑡2, 𝑡2 ≪ 1

𝑷⊥ 𝑡0 ≈ 𝑷⊥ 𝑡1 + 𝑖𝑡2
𝑒𝑬⊥ 𝑡1

𝜔

𝑡2 =
𝜎

𝑎⊥
, 𝜎 = 1 +

𝑃⊥
2 𝑡1
𝑚2 , 𝑎⊥ =

𝑒𝐸⊥ 𝑡1
𝑚𝜔

, 𝑷⊥ 𝑡1 𝑬⊥ 𝑡1 = 0

• Stationary point 𝑷⊥
2 𝑡0 = −𝑚2

• Phase expansion 

• LCFA result ( Δ𝑡 2 and Δ𝑡 3 lead to Airy functions)

𝑓 𝑡 ≈ 𝑓 𝑡0 +
1

2
ሷ𝑓 𝑡0 Δ𝑡 2 +

1

6
ሸ𝑓 𝑡0 Δ𝑡 3 +

1

24
ሹ𝑓 𝑡0 Δ𝑡 4 +⋯

𝜒 ≈
ℰ 𝑡1 𝑎⊥𝜔

𝑚2

𝜒′ ≈
ℰ′ 𝑡1 𝑎⊥𝜔

𝑚2

𝜘 =
𝑘𝑎⊥𝜔

𝑚2

𝑦 =
𝜘

2𝜒𝜒′

2
3

𝜎

𝑀𝑠
𝜇
≈

1

2𝑘

1

𝑎⊥

2𝜒𝜒′

𝜘

1
3

ℎ𝜇 𝑡1 Ai 𝑦 −
𝑖

𝑎⊥
2

2𝜒𝜒′

𝜘

2
3
ሶℎ𝜇 𝑡1 Ai′ 𝑦 −

𝑦

2𝑎⊥
3

2𝜒𝜒′

𝜘
ሷℎ 𝑡1 Ai 𝑦

𝑀𝑠
𝜇
𝑀𝑠,𝜇
∗ ≈

𝜔2

4𝑘𝑚2𝜒𝜒′
2𝜒𝜒′

𝜘

4
3 𝜘

2𝜒𝜒′

2
3

Ai2 𝑦 − 𝑦Ai2 𝑦 + Ai′
2
𝑦



• Compare what we neglected ሹ𝑓 𝑡0 Δ𝑡 4 with what we kept ሷ𝑓 𝑡0 Δ𝑡 2 and ሸ𝑓 𝑡0 Δ𝑡 3

• Formation time 

• Validity condition

ВведениеLCFA validity
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ሷ𝑓 𝑡0 ≈ −𝑎⊥
2 𝜎

𝜘

𝜒𝜒′
, ሸ𝑓 𝑡0 ≈ 𝑖𝑎⊥

3
𝜘

𝜒𝜒′

ሹ𝑓 𝑡0 Δ𝑡 4 ≪ 1

ሷ𝑓 𝑡0 Δ𝑡 2~1, ሸ𝑓 𝑡0 Δ𝑡 3 ∼ 1 Δ𝑡 ∼
1

𝑎⊥

𝜒𝜒′

𝜘

1

3

ሹ𝑓 𝑡0 ≈ 3𝑖𝑎⊥
3
𝜘

𝜒𝜒′
𝒂⊥ ሶ𝒂⊥

𝑎⊥
2 −

𝑚𝑎∥(ℰ + ℰ′)

ℰℰ′

1

𝑎⊥

𝜒𝜒′

𝜘

1/3
𝒂⊥ ሶ𝒂⊥

𝑎⊥
2 ≪ 1

𝑎∥
𝑎⊥

𝜒𝜒′

𝜘

1/3
𝑚 (ℰ + ℰ′)

ℰℰ′
≪ 1

Δ𝑡 ∼
1

𝑎⊥

𝜒𝜒′

𝜘

1/3

≪ 1

locally constant

𝑚

ℰ
,
𝑚

ℰ′
≪

𝜘

𝜒𝜒′

1/3

crossed

geometrical factor geometrical factor

(formation time is smaller than laser period) (particle is ultrarelativistic)
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LC(C)FA validity and small parameters

Stationary point approximation provides two small parameters and one additional 
condition arises from using WKB approximation to solve Klein-Gordon equation 

Locally constant:

Crossed:

WKB: 𝐸 ≪ 𝐸𝑐𝑟

𝜉1 =
1

𝑎⊥

2𝜒𝜒′

𝜘

1/3

≪ 1

𝜉2 𝜉2
′ =

1

𝛾

1

𝛾′
2𝜒𝜒′

𝜘

1
3

≪ 1
𝜉2
𝜉1
=
𝑎⊥
𝛾

𝛾 =
ℰ 𝑡1
𝑚

, 𝛾′ =
ℰ′ 𝑡1
𝑚



• Expand emission amplitude into series over 𝜉1, 𝜉2, 𝜉2′

• Squared emission amplitude

• LCFA contribution

• First order correction

Υ1 𝑦 = 𝑦
3
2 2𝑦

3
2 + 5 Ai2 + 4𝑦

5
2AiAi′ + 2 𝑦 𝑦

3
2 + 2 Ai′2

Υ2 𝑦 = −2 1 + 𝑦
3
2 Ai2 + yAiAi′

𝜏 =
𝑃⊥
𝑚
, 𝑦 =

2𝜒𝜒′

𝜘

1/3

1 + 𝜏2

𝜉1 =
1

𝑎⊥

2𝜒𝜒′

𝜘

1/3
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Corrections to LCFA

𝑓0 𝑡 ≈ 𝑓 𝑡0 +
1

2
ሷ𝑓 0 𝑡0 Δ𝑡 2 +

1

6
ሸ𝑓(0) 𝑡0 Δ𝑡 3

𝑀𝑠
𝜇
=

1

2𝜋 2𝑘
න
0

2𝜋

𝑑𝑡 ℎ𝜇 𝑡 𝑒𝑓(𝑡) 𝑀𝑠
𝜇
=

1

2𝜋 2𝑘
න
0

2𝜋

𝑑𝑡 ℎ𝜇 𝑡 𝑒[𝑓 𝑡 −𝑓0 𝑡 ]𝑒𝑓0 𝑡

−𝑎⊥
2 𝜎

𝜘

𝜒𝜒′
𝑖𝑎⊥

3
𝜘

𝜒𝜒′

𝑀𝜇𝑀𝜇
∗ ≈

𝜔2

4𝑘𝑚2𝜒𝜒′
2𝜒𝜒′

𝜘

4
3

ℳ0 +ℳ1 +ℳ2 +⋯

ℳ0 = − 𝑦Ai2 𝑦 + Ai′2 𝑦 +
𝜘

2𝜒𝜒′

2
3

Ai2 𝑦

ℳ1 = −𝜉1
𝜏

1 + 𝜏2

𝒂⊥ × ሶ𝒂⊥

3𝑎⊥
2 Υ1 𝑦 +

𝜘

2𝜒𝜒′

2
3

Υ2 𝑦

expand up to desired order of 𝜉1, 𝜉2

small parameter geometrical factor
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Numerical results

LCFA
exact

𝑒𝐸 𝑡 = 𝑚𝜔𝑎0 cos 𝑡 , sin 𝑡 , 0 , 𝜔 = 0.01𝑚, 𝑝 = 8𝑚 1,0,1 , 𝑘 = 5𝑚{sin 𝜃 , 0, cos 𝜃}

𝑎0 = 50

LCFA
exact

𝑎0 = 10

LCFA+1st correction

LCFA
exact

𝑎0 = 5

LCFA+1st correction

LCFA
exact

𝑎0 = 2.5

LCFA+1st correction

For smaller 𝑎0 (larger 𝜉1,2) one needs next order corrections (to be implemented)

Also the first order correction is small if 𝒑 is in (𝑥, 𝑦) plane due to geometrical factor
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ВведениеSummary

• We calculated the probability of photon emission by a scalar 
particle in an arbitrary time-dependent strong electric field

• The result can be represented as a series expansion over small 
parameters 𝜉1, 𝜉2, 𝜉2

′

• Zeroth order term coincides with LCFA, and the corrections can 
be calculated up to (in principle) arbitrary order

• First order correction demonstrates good agreement with the 
exact calculation, second order correction will be implemented 
soon

• The approach is straightforwardly generalized for fermions
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Corrections to LCFA

𝑀𝜇𝑀𝜇
∗ ≈

𝜔2

4𝑘𝑚2𝜒𝜒′
2𝜒𝜒′

𝜘

4
3

ℳ0 +ℳ1 +ℳ2 +⋯

ℳ0 = − 𝑦Φ2 𝑦 + Φ′2 𝑦 +
𝜘

2𝜒𝜒′

2
3

Φ2 𝑦

ℳ1 = −𝜉1
𝜏 𝑦

1 + 𝜏2

𝒂⊥ × ሶ𝒂⊥

3𝑎⊥
2 Υ1 𝑦 +

𝜘

2𝜒𝜒′

2
3

Υ2 𝑦

𝜉1 =
1

𝑎⊥

2𝜒𝜒′

𝜘

1/3

𝜉2 =
2𝜒𝜒′

𝜘

1
3𝑚

ℰ

𝜉2′ =
2𝜒𝜒′

𝜘

1
3𝑚

ℰ′

ℳ2 = 𝜉1
2𝐺1 𝑡1 Υ3 𝑦 +

𝜘

2𝜒𝜒′

2
3

Υ4 𝑦 + 𝜉2
2𝐺2 𝑡1 Υ5 𝑦 +

𝜘

2𝜒𝜒′

2
3

Υ6 𝑦 +

+𝜉1𝜉2𝐺3 𝑡1 Υ7 𝑦 +
𝜘

2𝜒𝜒′

2
3

Υ8 𝑦 +⋯


