LCFA for radiation in a time-dependent electric field: applicability and corrections

E.G. Gelfer, A.M. Fedotov, A.A. Mironov, S.Weber

Original idea of LCFA

- If $a_{0}=\frac{e E}{m \omega} \gg 1$, then the external field can be considered as constant, since the formation length of the photon emission $\sim \lambda / a_{0}$
- If the particle is fast ($\gamma \gg 1$), then in its proper reference frame the external field is crossed $(\boldsymbol{E} \perp \boldsymbol{B}, E=B)$

- $W^{e \rightarrow e \gamma} \approx W_{C C F}(\chi)$, the probability can be approximated by CCF probability, which depends on the single QED parameter χ

$$
\chi=\frac{e \sqrt{-\left(F_{\mu \nu} p^{v}\right)^{2}}}{m^{3}}
$$

Motivation

- LCFA is used in almost all the codes, where strong field QED is implemented

$$
\frac{d P^{L C F A}}{d u}=-\frac{e^{2} m^{2} c}{4(1+u)^{2}}\left[\operatorname{Ai}_{1}(z)+\frac{2}{z} \operatorname{Ai}^{\prime}(z)\right], \quad z=\left(\frac{\varkappa}{\chi \chi^{\prime}}\right)^{\frac{2}{3}}, \quad u=\frac{\varkappa}{\chi^{\prime}}
$$

- It is crucial to determine, when it fails and how to correct it
- LCFA has been studied mainly for plain wave like fields

Colliding pulses are beneficial for cascades

Stằnding wave:
${ }^{*}$ in B node

$$
\boldsymbol{B}=0, \quad \boldsymbol{E}=\boldsymbol{E}(t)
$$

- We consider arbitrary time-dependent electric field $\boldsymbol{E}(t)=-\boldsymbol{A}_{5}^{\prime}(t)$

NCS probability in scalar QED

WKB wave functions

$$
\Phi_{W K B}^{(\pm)}(t)=\frac{C}{\sqrt{2 \mathcal{E}(t)}} e^{\mp \frac{i}{\omega} \int_{-\infty}^{t} \varepsilon\left(t^{\prime}\right) d t^{\prime}+i \boldsymbol{p} \boldsymbol{\varepsilon} \quad \mathcal{E}(t)=\sqrt{m^{2}+\boldsymbol{P}^{2}(t)}, \quad \boldsymbol{P}(t)=\boldsymbol{p}-e \boldsymbol{A}(t)}
$$

$$
\frac{W}{V_{4}}=-\frac{e^{2}}{4 \pi^{2} \omega} \int d \mathbf{k} \sum_{s} M_{s}^{\mu} M_{s, \mu}^{*} \delta\left(\frac{k}{\omega}+\mathcal{K}_{\mathbf{p}^{\prime}}-\mathcal{K}_{\mathbf{p}}-s\right) \quad \text { emission probability per 4-volume }
$$

photon wave vector

$$
\mathcal{K}_{\mathrm{p}}=\frac{1}{2 \pi \omega} \int_{0}^{2 \pi} \mathcal{E}(t) d t \quad \text { particle energy averaged over field period }
$$

$$
M_{s}^{\mu}=\frac{1}{2 \pi \sqrt{2 k}} \int_{0}^{2 \pi} d t h^{\mu}(t) e^{f(t)}
$$

partial emission amplitude (absorption of s photons) we need its square to obtain the probability distribution
$f(t)=\frac{i}{\omega}\left[k t+\int_{-\infty}^{t} \mathcal{E}^{\prime}\left(t^{\prime}\right) d t^{\prime}-\int_{-\infty}^{t} \mathcal{E}\left(t^{\prime}\right) d t^{\prime}\right], \quad h^{\mu}(t)=\frac{P^{\mu}(t)}{\sqrt{\mathcal{E}(t) \mathcal{E}^{\prime}(t)}} \quad P^{\mu}(t)=\left\{\begin{array}{l}\{(t), P(t)\} \\ \cdots\end{array}\right.$
Stationary phase approximation

$$
\dot{f}\left(t_{0}\right)=0 \Longrightarrow \varepsilon\left(t_{0}\right)-\mathcal{E}^{\prime}\left(t_{0}\right)-k=0
$$

$$
\sqrt{m^{2}+P_{\|}^{2}\left(t_{0}\right)+P_{\perp}^{2}\left(t_{0}\right)}-\sqrt{m^{2}+\left(P_{\|}\left(t_{0}\right)-k\right)^{2}+P_{\perp}^{2}\left(t_{0}\right)}-k=0 \Longrightarrow \boldsymbol{P}_{\perp}^{2}\left(t_{0}\right)=-m^{2}
$$

Amplitude calculation

- Stationary point $\boldsymbol{P}_{\perp}^{2}\left(t_{0}\right)=-m^{2}$ $P_{\perp} \overbrace{k}^{P}$

$$
\begin{gathered}
t_{0}=t_{1}+i t_{2}, \quad t_{2} \ll 1 \\
\boldsymbol{P}_{\perp}\left(t_{0}\right) \approx \boldsymbol{P}_{\perp}\left(t_{1}\right)+i t_{2} \frac{\boldsymbol{e} \boldsymbol{E}_{\perp}\left(t_{1}\right)}{\omega}
\end{gathered}
$$

$t_{2}=\frac{\sqrt{\sigma}}{a_{\perp}}, \quad \sigma=1+\frac{P_{\perp}^{2}\left(t_{1}\right)}{m^{2}}, \quad a_{\perp}=\frac{e E_{\perp}\left(t_{1}\right)}{m \omega}, \quad \boldsymbol{P}_{\perp}\left(t_{1}\right) E_{\perp}\left(t_{1}\right)=0$

- Phase expansion $f(t) \approx f\left(t_{0}\right)+\frac{1}{2} \ddot{f}\left(t_{0}\right)(\Delta t)^{2}+\frac{1}{6} \dddot{f}\left(t_{0}\right)(\Delta t)^{3}+\frac{1}{24} \dddot{f}\left(t t_{0}\right)(\Delta t)^{4}+\cdots$
- LCFA result $\left((\Delta t)^{2}\right.$ and $(\Delta t)^{3}$ lead to Airy functions)

$$
\chi \approx \frac{\varepsilon\left(t_{1}\right) a_{\perp} \omega}{m^{2}}
$$

$$
\begin{aligned}
& M_{s}^{\mu} \approx \frac{1}{\sqrt{2 k}}\left[\frac{1}{a_{\perp}}\left(\frac{2 \chi \chi^{\prime}}{\varkappa}\right)^{\frac{1}{3}} h^{\mu}\left(t_{1}\right) \mathrm{Ai}(y)-\frac{i}{a_{\perp}^{2}}\left(\frac{2 \chi \chi^{\prime}}{\varkappa}\right)^{\frac{2}{3}} \dot{h}^{\mu}\left(t_{1}\right) \mathrm{Ai}^{\prime}(y)-\frac{y}{2 a_{\perp}^{3}}\right. \\
& M_{s}^{\mu} M_{s, \mu}^{*} \approx \frac{\omega^{2}}{4 k m^{2} \chi \chi^{\prime}}\left(\frac{2 \chi \chi^{\prime}}{\varkappa}\right)^{\frac{4}{3}}\left[\left(\frac{\varkappa}{2 \chi \chi^{\prime}}\right)^{\frac{2}{3}} \mathrm{Ai}^{2}(y)-\left(y \mathrm{Ai}^{2}(y)+{\left.\left.\mathrm{Ai}^{\prime 2}(y)\right)\right]}^{2}\right]\right.
\end{aligned}
$$

$$
\chi^{\prime} \approx \frac{\varepsilon^{\prime}\left(t_{1}\right) a_{\perp} \omega}{m^{2}}
$$

$$
\varkappa=\frac{k a_{\perp} \omega}{m_{2}^{2}}
$$

$$
y=\left(\frac{\varkappa}{2 \chi \chi^{\prime}}\right)^{\frac{2}{3}} \sigma
$$

LCFA validity

- Compare what we neglected $\dddot{f}\left(t_{0}\right)(\Delta t)^{4}$ with what we kept $\ddot{f}\left(t_{0}\right)(\Delta t)^{2}$ and $\dddot{f}\left(t_{0}\right)(\Delta t)^{3}$
$\ddot{f}\left(t_{0}\right) \approx-a_{\perp}^{2} \sqrt{\sigma} \frac{x}{\chi \chi^{\prime}}, \quad \dddot{f}\left(t_{0}\right) \approx i a_{\perp}^{3} \frac{x}{\chi \chi^{\prime}}$

$$
\dddot{f}\left(t_{0}\right) \approx 3 i a_{\perp}^{3} \frac{\chi}{\chi \chi^{\prime}}\left[\frac{a_{\perp} \dot{\boldsymbol{a}}_{\perp}}{a_{\perp}^{2}}-\frac{m a_{\|}\left(\varepsilon+\varepsilon^{\prime}\right)}{\varepsilon \varepsilon^{\prime}}\right]
$$

- Formation time $\ddot{f}\left(t_{0}\right)(\Delta t)^{2} \sim 1, \dddot{f}\left(t_{0}\right)(\Delta t)^{3} \sim 1$

$$
\Delta t \sim \frac{1}{a_{\perp}}\left(\frac{\chi x^{\prime}}{x}\right)^{\frac{1}{3}}
$$

- Validity condition

$$
\left|\dddot{f}\left(t_{0}\right)\right|(\Delta t)^{4} \ll 1
$$

$$
\begin{gathered}
\frac{1}{a_{\perp}}\left(\frac{\chi \chi^{\prime}}{\varkappa}\right)^{1 / 3} \frac{a_{\perp} \dot{a}_{\perp}}{a_{\perp}^{2}} \ll 1 \\
\Delta t \sim \frac{1}{a_{\perp}}\left(\frac{\chi \chi^{\prime}}{\varkappa}\right)^{1 / 3} \ll 1
\end{gathered}
$$

locally constant
(formation time is smaller than laser period)

$$
\frac{a_{\|}}{a_{\perp}}\left(\frac{\chi \chi^{\prime}}{\varkappa}\right)^{1 / 3} \frac{m\left(\varepsilon+\varepsilon^{\prime}\right)}{\varepsilon \varepsilon^{\prime}} \ll 1
$$

geometrical factor

$$
\frac{m}{\varepsilon^{\prime}}, \frac{m}{\varepsilon^{\prime}} \ll\left(\frac{\varkappa}{\chi \chi^{\prime}}\right)^{1 / 3}
$$

crossed
(particle is ultrarelativistic)

LC(C)FA validity and small parameters

Stationary point approximation provides two small parameters and one additional condition arises from using WKB approximation to solve Klein-Gordon equation

Locally constant: $\quad \xi_{1}=\frac{1}{a_{\perp}}\left(\frac{2 \chi \chi^{\prime}}{\varkappa}\right)^{1 / 3} \ll 1$

Crossed:

$$
\xi_{2}\left[\xi_{2}^{\prime}\right]=\frac{1}{\gamma}\left[\frac{1}{\gamma^{\prime}}\right]\left(\frac{2 \chi \chi^{\prime}}{\varkappa}\right)^{\frac{1}{3}} \ll 1
$$

$$
\frac{\xi_{2}}{\xi_{1}}=\frac{a_{\perp}}{\gamma}
$$

WKB:
$E \ll E_{c r}$
$\gamma=\frac{\varepsilon\left(t_{1}\right)}{m}, \quad \gamma^{\prime}=\frac{\varepsilon^{\prime}\left(t_{1}\right)}{m}$

Corrections to LCFA

- Expand emission amplitude into series over $\xi_{1}, \xi_{2}, \xi_{2}{ }^{\prime}$

$$
\begin{aligned}
& M_{s}^{\mu}=\frac{1}{2 \pi \sqrt{2 k}} \int_{0}^{2 \pi} d t h^{\mu}(t) e^{f(t)} \Rightarrow M_{s}^{\mu}=\frac{1}{2 \pi \sqrt{2 k}} \int_{0}^{2 \pi} d t h^{\mu}(t) e^{\left[f(t)-f_{0}(t)\right]} e^{f_{0}(t)} \\
& f_{0}(t) \approx f\left(t_{0}\right)+\frac{1}{2} \ddot{f}^{(0)}\left(t_{0}\right)(\Delta t)^{2}+\frac{1}{6} \ddot{f}^{(0)}\left(t_{0}\right)(\Delta t)^{3} \\
& -a_{\perp}^{2} \sqrt{\sigma} \frac{\varkappa^{-}}{\chi \chi^{\prime}} \quad i a_{\perp}^{3} \frac{\mathcal{\varkappa}^{-}}{\chi \chi^{\prime}}
\end{aligned}
$$

- Squared emission amplitude

$$
M^{\mu} M_{\mu}^{*} \approx \frac{\omega^{2}}{4 k m^{2} \chi \chi^{\prime}}\left(\frac{2 \chi \chi^{\prime}}{\varkappa}\right)^{\frac{4}{3}}\left[\mathcal{M}_{0}+\mathcal{M}_{1}+\mathcal{M}_{2}+\cdots\right]
$$

- LCFA contribution
$\mathcal{M}_{0}=-\left[y \mathrm{Ai}^{2}(y)+\mathrm{Ai}^{\prime 2}(y)\right]+\left(\frac{\varkappa}{2 \chi \chi^{\prime}}\right)^{\frac{2}{3}} \mathrm{Ai}^{2}(y) \quad \mathrm{r}_{1}(y)=y^{\frac{3}{2}}\left(2 y^{\frac{3}{2}}+5\right)_{\mathrm{Ai}^{2}}+4 y^{\frac{5}{2}} \mathrm{AiAi}^{\prime}+2 \sqrt{y}\left(y^{\frac{3}{2}}+2\right)_{\mathrm{Ai}^{\prime 2}}$
- First order correction

$$
r_{2}(y)=-2\left[\left(1+y^{\frac{3}{2}}\right)_{\mathrm{Ai}^{2}}+\text { yAiAi' }^{\prime}\right]
$$

$$
\begin{aligned}
& \mathcal{M}_{1}=-\xi_{1} \frac{\tau}{\sqrt{1+\tau^{2}}}\left|a_{\perp} \times \dot{a}_{\perp}\right| \left\lvert\,\left[r_{1}(y)+\left(\frac{\varkappa}{2 x x^{\prime}}\right)^{\frac{2}{3}} \gamma_{2}(y)\right] \quad \tau=\frac{P_{\perp}}{m}\right., \quad y=\left(\frac{2 x x^{\prime}}{\varkappa}\right)^{1 / 3} \sqrt{1+\tau^{2}} \\
& \text { small parameter geometrical fator } \\
& \xi_{1}=\frac{1}{a_{\perp}}\left(\frac{2 \chi \chi^{\prime}}{\varkappa}\right)^{1 / 3}
\end{aligned}
$$

Numerical results

$$
e E(t)=m \omega a_{0}\{\cos t, \sin t, 0\}, \quad \omega=0.01 m, \quad p=8 m\{1,0,1\}, \quad k=5 m\{\sin \theta, 0, \cos \theta\}
$$

For smaller a_{0} (larger $\xi_{1,2}$) one needs next order corrections (to be implemented)
Also the first order correction is small if \boldsymbol{p} is in (x, y) plane due to geometrical factor

Summary

- We calculated the probability of photon emission by a scalar particle in an arbitrary time-dependent strong electric field
- The result can be represented as a series expansion over small parameters $\xi_{1}, \xi_{2}, \xi_{2}^{\prime}$
- Zeroth order term coincides with LCFA, and the corrections can be calculated up to (in principle) arbitrary order
- First order correction demonstrates good agreement with the exact calculation, second order correction will be implemented soon
- The approach is straightforwardly generalized for fermions

Corrections to LCFA

$$
\begin{aligned}
& M^{\mu} M_{\mu}^{*} \approx \frac{\omega^{2}}{4 k m^{2} \chi \chi^{\prime}}\left(\frac{2 \chi \chi^{\prime}}{\varkappa}\right)^{\frac{4}{3}}\left[\mathcal{M}_{0}+\mathcal{M}_{1}+\mathcal{M}_{2}+\cdots\right] \\
& \mathcal{M}_{0}=-\left[y \Phi^{2}(y)+\Phi^{\prime 2}(y)\right]+\left(\frac{\varkappa}{2 \chi \chi^{\prime}}\right)^{\frac{2}{3}} \Phi^{2}(y) \\
& \mathcal{M}_{1}=-\xi_{1} \frac{\tau \sqrt{y}}{\sqrt{1+\tau^{2}}} \frac{\left|a_{\perp} \times \dot{a}_{\perp}\right|}{3 a_{\perp}^{2}}\left[\Upsilon_{1}(y)+\left(\frac{\varkappa}{2 \chi \chi^{\prime}}\right)^{\frac{2}{3}} \Upsilon_{2}(y)\right] \\
& \begin{array}{l}
\xi_{1}=\frac{1}{a_{\perp}}\left(\frac{2 \chi x^{\prime}}{\varkappa}\right)^{1 / 3} \\
\xi_{2}=\left(\frac{2 \chi \chi^{\prime}}{\varkappa}\right)^{\frac{1}{3}} \frac{m}{\bar{\varepsilon}} \\
\xi_{2}^{\prime}=\left(\frac{2 \chi \chi^{\prime}}{\varkappa}\right)^{\frac{1}{3}} \frac{m}{\varepsilon^{\prime}}
\end{array} \\
& \mathcal{M}_{2}=\xi_{1}^{2} G_{1}\left(t_{1}\right)\left[\Upsilon_{3}(y)+\left(\frac{\varkappa}{2 \chi \chi^{\prime}}\right)^{\frac{2}{3}} \Upsilon_{4}(y)\right]+\xi_{2}^{2} G_{2}\left(t_{1}\right)\left[\Upsilon_{5}(y)+\left(\frac{\varkappa}{2 \chi \chi^{\prime}}\right)^{\frac{2}{3}} \Upsilon_{6}(y)\right]+ \\
& +\xi_{1} \xi_{2} G_{3}\left(t_{1}\right)\left[\Upsilon_{7}(y)+\left(\frac{\varkappa}{2 \chi \chi^{\prime}}\right)^{\frac{2}{3}} \Upsilon_{8}(y)\right]+\cdots
\end{aligned}
$$

