WORLDLINE FERMION PROPAGATOR DRESSED WITH N PHOTONS

Victor M. Banda Instituto de Física y Matemáticas, UMSNH, Morelia, Michoacán, México.

in collaboration with James P. Edwards, Christian Schubert, Fiorenzo bastianelli, Olindo corradini and naser ahmadiniaz

1. InTRODUCTION

The standard approach for calculating the S-matrix in quantum field theory was developed approximately seventy years ago. It is based on path integrals over field configurations, and can be formulated as a diagrammatic perturbative method. Despite its success, the computational effort required to describe several processes under this approach is non-negligible. Alternative to it, there is the Worldline formalism based on first-quantized relativistic particle path integrals, and which brings several advantages over the standard approach. However, a long-standing problem has been to extend this formalism to amplitudes involving open fermion lines. It was recently that we develop a suitable formalism for the case of quantum electrodynamics in vacuum based on second-order fermions and the symbol map [1, 2]

2. DRESSED FERMION PROPAGATOR

The fermion propagator in the presence of an Abelian background field A, can be written as,

$$
\begin{aligned}
S^{x^{\prime} x}[A] & \left.=\left\langle x^{\prime}\right|[m-i \not D]^{-1}|x\rangle\right\rangle \\
& =(i \not D+m) K^{x^{\prime} x}[A],
\end{aligned}
$$

where the Kernel function $K^{x^{\prime} x}[A]$ is defined as

$$
K^{x^{\prime} x}[A]=\left\langle x^{\prime}\right|\left[-D^{2}+m^{2}+\frac{i e}{2} \gamma^{\mu} \gamma^{\nu} F_{\mu \nu}\right]^{-1}|x\rangle .
$$

The worldline formalism uses the Schwinger proper time trick to exponentiate the inverse of the operator $-D^{2}+m^{2}+\frac{i e}{\partial} \gamma^{\mu} \gamma^{\nu} F_{\mu \nu}$. The resulting expression is a path integral representation of the Kernel
$K^{x^{\prime} x}[A]=\int_{0}^{\infty} d T e^{-m^{2} T} \int_{x(0)=x}^{x(T)=x^{\prime}} \mathcal{D} x \mathcal{P} e^{-\int_{0}^{T} d \tau\left(\frac{1}{4} \dot{x}^{2}+i e x \cdot A+\frac{i}{2} e \gamma^{\mu} \gamma^{\nu} F_{\mu \nu}\right)}$, where \mathcal{P} represents the path-ordering operator. It can be shown that

$$
\mathcal{P} e^{-\int_{O}^{T} d \tau \frac{i}{2} e \gamma^{\mu} \gamma^{\nu} F_{\mu \nu}}=2^{-\frac{D}{2}} \operatorname{symb}^{-1} \int_{A} D \psi e^{-\int_{0}^{T} \frac{1}{2} \psi_{\mu} \psi^{\mu} d \tau}
$$

$$
x e^{\int_{0}^{T} i e F_{\mu \nu}(\psi+\eta)^{\mu}(\psi+\eta)^{\nu} d \tau} .
$$

Here the symbol map, symb, is defined by

$$
\operatorname{symb}\left(\gamma^{\alpha_{1} \alpha_{2} \ldots \alpha_{n}}\right) \equiv(-i \sqrt{2})^{n} \eta^{\alpha_{1}} \eta^{\alpha_{2}} \ldots \eta^{\alpha_{n}},
$$

where $\gamma^{\alpha_{1} \alpha_{2} \ldots \alpha_{n}}$ denotes the totally antisymmetrised product of gamma matrices.

3. N-PHOTON AMPLITUDES

N-photon scattering amplitudes are generated by expanding $A(x)$ as a sum of planes waves with fixed polarization,

$$
A^{\mu}(x)=\sum_{i=1}^{N} \epsilon_{i}^{\mu} e^{i k_{i} \cdot x}
$$

Substituting the plane wave expansion into the worldline version of the fermion propagator, taking only the $\mathcal{O}(N)$ multi-linear expression in polarisation vectors, and going to momentum space, we obtain the following version of the N-photon untruncated propagator,

$$
S_{N}^{p^{\prime} p}=\left(\not p^{\prime}+m\right) K_{N}-e \sum_{i=1}^{N} \not \oiint_{i} K_{N-1}^{p^{\prime}+k_{i}, p}
$$

where a global momentum conservation factor $(2 \pi)^{D} \delta^{D}\left(p+p^{\prime}+\right.$ $\sum_{i=1}^{N} k_{i}$) has been omitted, and
$K_{N}^{p^{\prime} p}=\left.(-i e)^{N} \operatorname{symb}^{-1} \int_{0}^{\infty} d T e^{-m^{2} T} \int_{0}^{T} d \tau_{1} \cdots \int \theta_{N} e^{\operatorname{Exp}}\right|_{\epsilon_{1} \ldots \epsilon_{N}}$,

being

$$
\operatorname{Exp}=-p^{\prime 2} T-\sum_{i=1}^{N} \sqrt{2} \eta \cdot\left(\epsilon_{i}+i \theta_{i} k_{i}\right)+\frac{1}{2} \sum_{i, j=1}^{N} \theta_{i} \theta_{j} \sigma_{i j} k_{i} \cdot k_{j}
$$

$$
+\sum_{i=1}^{N}\left(i \theta_{i} \epsilon_{i}-\tau_{i} k_{i}\right) \cdot\left(p^{\prime}-p-\sum_{j=1}^{N} \sigma_{i j} k_{j}\right)-i \sum_{i, j=1}^{N} \sigma_{i j} \epsilon_{i} \cdot k_{j} \theta_{j}
$$

$$
-\frac{1}{2} \sum_{i, j=1}^{N}\left(\sigma_{i j}+2 \theta_{i} \theta_{j} \delta_{i j}\right) \epsilon_{i} \cdot \epsilon_{j} .
$$

$\left(\sigma_{i j}=\operatorname{sign}\left(\tau_{i}-\tau_{j}\right), \delta_{i j}=\delta\left(\tau_{i}-\tau_{j}\right)\right)$.

4. KERNEL DECOMPOSITION IN $D=4$

For $D=4$ the the kernel $K_{N}^{p^{\prime} p}$ can be written as

$$
\begin{aligned}
K_{N}^{p^{\prime} p} & =(-i e)^{N} \frac{\mathfrak{R}_{N}^{p^{\prime} p}}{\left(p^{\prime 2}+m^{2}\right)\left(p^{2}+m^{2}\right)}, \\
\mathfrak{K}_{N}^{p^{\prime} p} & =A_{N}+B_{N \mu \mu} \sigma^{\mu \nu}-i C_{N} \gamma_{5}, \quad \sigma^{\mu \nu}=\frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right], \\
A_{N} & =A_{N}^{\text {scalar }}+A_{N}^{\text {spin }} .
\end{aligned}
$$

5. ON-SHELL MATRIX ELEMENT

The on-shell matrix element $\mathcal{M}_{N s^{\prime} s}^{p^{\prime} p}$ corresponding to the dressed electron propagator with fixed spins s, s^{\prime}, in the worldline formalism, reads tron
as

$$
\mathcal{M}_{N s^{\prime} s}^{p^{\prime} p}=\frac{(-i e)^{N}}{2 m} \bar{u}_{s^{\prime}}\left(-p^{\prime}\right) \mathfrak{K}_{N}^{p^{\prime} p} u_{s}(p) .
$$

Also, in the on-shell case, we obtain the identities

$$
\begin{aligned}
& A_{N}\left(m^{2}-p \cdot p^{\prime}\right)=2 p^{\mu} B_{N \mu \nu} p^{\prime \nu} \\
& C_{N}\left(m^{2}+p \cdot p^{\prime}\right)=2 p^{\mu} \tilde{B}_{N \mu \nu} p^{\prime \nu}, \quad \tilde{B}_{N \mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \alpha \beta} B_{N \alpha \beta}
\end{aligned}
$$

from which the following spin-averaged cross sections is obtained,

$$
\left.\left.\langle | \mathcal{M}_{N}^{p^{\prime} p}\right|^{2}\right\rangle=e^{2 N}\left[\left|A_{N}\right|^{2}+2 B_{N}^{\alpha \beta} B_{N \alpha \beta}^{\star}-\left|C_{N}\right|^{2}\right]
$$

6. SECOND ORDER FERMIONS

The Kernel $K_{N}^{p^{\prime} p}$, and therefore the matrix element $\mathcal{M}_{N s^{\prime} s}^{p^{\prime}}$, can equivalently be obtained with the aid of the less familiar second order rules shown below [3].

$-2 e^{2} \eta_{\mu \nu}$
$e\left(\sigma_{\mu \nu}\right)_{\alpha \beta} k^{\nu}$

7. CONCLUSIONS

We have provided a new approach to the worldline path integral representation of the open Dirac-fermion line dressed with N photons. This approach presents several computational advantages compared to the standard first order formalism. One of these advantages is a compact representation for the spin-averaged cross section. We have also obtained general formulas for fully polarised amplitudes at tree level from the worldline version of the matrix element $\mathcal{M}_{N s^{\prime} s}^{p p}[2]$.

References.

1. N. Ahmadiniaz et al., JHEP 08 (2020) 049, arXiv:2004.01391 [hep-th]. 2. N. Ahmadiniaz et al., arXiv:2107.00199 [hep-th]. 3. A. Morgan, Phys. Lett. B 351 (1995) 249, arXiv:hep-ph/9502230 [hep-ph].
