Effects of electron beam geometry on pair production in laser-electron scattering

Ó.Amaro^{1*}, M.Vranic¹

GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

*<u>oscar.amaro@tecnico.ulisboa.pt</u>

Extension to a Gaussian laser

peak laser field (because of spatio-temporal

Each electron can be assigned $a_{0.eff} \leq a_0$.

We can use $a_{0,eff}$ distribution to extend

the plane wave model to non-ideal electron

Not all electrons will interact with the

synchronisation).

Motivation

Near future laser facilities will reach peak intensities capable of probing QED effects, e.g. Nonlinear Compton Scattering (γ -ray emission) and Breit-Wheeler e^+e^- pair production.

Accurate predictions of the positron yield in laser-electron scattering require taking into account the laser focusing geometry, which is usually accomplished using full-scale PIC-QED simulations.

For a plane-wave laser with a temporal envelope the total number of new pairs per interacting e^- can be approximated as:

 γ_{PW} $(\gamma_0 mc^2 - \hbar\omega_c)^2 dN_{\gamma}$

beams and focused laser pulses.

13-17 September 2021, Jena

$$N_{\pm}^{TW}(\gamma_0, a_0, \lambda, \tau) \simeq 3\sqrt{\frac{1}{2}} P_{\pm}(\omega_c) \chi_{c,rr} \frac{\langle \tau \sigma \rangle}{\hbar \gamma_0 m c^2} \frac{\tau}{d\omega} \Big|_{\omega = \omega_c}$$

* T. Blackburn, PRA 2017

y $|\nabla a_{0,\text{eff}}|$ $da_{0,eff}$ $\overrightarrow{n}^{\prime}$ Figure I: Volume associated with one value of the laser intensity

Peak laser intensity felt by particles within a wide beam

In the scattering between a focused Gaussian laser pulse and a wide electron beam $(R \gg W_0)$, the electron distribution according to the maximum a_0 they interact with can be expressed as:

$$\frac{dN_b}{da_{0,\text{eff}}} = \begin{cases} \frac{4\pi \ n_b \ W_0^2 \ z_R}{a_{0,\text{eff}}} \frac{\sqrt{a_0^2 - a_{0,\text{eff}}^2}}{3a_{0,\text{eff}}} \left(2 + \left(\frac{a_0}{a_{0,\text{eff}}}\right)^2\right), a_{0,\text{eff}} \ge a_z \\ \frac{4\pi \ n_b \ W_0^2 \ z_R}{a_{0,\text{eff}}} \frac{L}{4z_R} \left(1 + \left(\frac{L}{4z_R}\right)^2\right), a_{0,\text{eff}} < a_z \text{, with } a_z \equiv a_0 / \sqrt{1 + \left(L/4z_R\right)^2} \end{cases}$$

The total number of positrons is then $N_+ = \int N_+^{PW}(a_{0,\text{eff}}) \frac{dN_b}{da_{0,\text{eff}}} \ da_{0,\text{eff}}$
beam : $E_0 = 13 \text{ GeV}, \ \sigma_x = 24.4 \ \mu\text{m}, \ \sigma_y = 29.6 \ \mu\text{m}, \ n_b = 10^{16} \text{ cm}^{-3}$
laser : $a_0 = 7.3, \ \lambda = 0.8 \ \mu\text{m}, \ \tau = 31 \ \text{fs}, \ W_0 = 3 \ \mu\text{m}$

Figure 2: Particle distribution for a Wide beam and positron yield as a function of temporal misalignment

Optimal focusing

 N_{+}^{PW} is a growing function of a_0 (at constant laser pulse energy $a_0 \propto W_0^{-1}$), and the number of seed electrons interacting with peak intensity $\propto W_0^2 z_R \propto W_0^4$.

There is a trade-off between using a short focal length to obtain the highest conceivable laser intensity, and having a wider interaction volume where more seed electrons participate in the interaction.

Using the previous particle distribution in $a_{0.eff}$, we integrate the results numerically to find the optimal spotsize and maximum positron yield.

beam :
$$E_0 = 10$$
 GeV, $L = 200 \ \mu \text{m}$, $n_b = 10^{16} \text{ cm}^{-3}$ laser : $\lambda = 0.8 \ \mu \text{m}$, $\tau = 150$ fs

Figure 3: (left) Number of generated positrons keeping the total laser energy constant (right) Optimal laser spotsize as a function of the total pulse energy.

Parameter study for future laser facilities

For a particular laser system and an electron beam, one can find an optimal spotsize associated with the maximum number of positrons that can be produced per shot. Here we show a parameter study identifying optimal conditions for lasers below 1 kJ and pulse durations below 200 fs.

For a $\varepsilon = 1500$ J laser (500 J for e^- acceleration, 1000 J for scattering)

- ELI, $N_{+} = 2.4 \times 10^{8} (n_{b}/10^{16} \text{ cm}^{-3})$ at $W_{0} = 6.2 \ \mu\text{m}$

beam : $L = 200 \ \mu \text{m}, \ n_b = 10^{16} \text{ cm}^{-3}$ laser : $\lambda = 0.8 \ \mu \text{m}, \ E_0 = 13 \text{ GeV}$

Figure 4: (left) Optimal laser focusing and (right) associated number of generated positrons

Funding

Conclusions

We have generalised a plane wave model for positron production in electron-laser scattering to include laser focusing,

electron beam distribution and spatio-temporal synchronisation.

Our optimisation study shows that aiming at a very short focal length and highest possible laser intensity is not always the best option.

For more information about lasers with different pulse durations τ and other electron beam shapes that can be relevant for future experimental design please see Ó. Amaro and M.Vranic, submitted to NJP (2021), arXiv:2106.01877

