Experimental search for Vacuum Diffraction using high-power laser and XFEL

Yudai Seino, Kyoto university

Experts of our team

Particle physics

: University of Tokyo, KEK

T. Inada, T. Yamazaki, T. Namba, S. Asai, (Y. Seino)

X-ray laser & High-power laser

I. Inoue, T. Osaka, M. Makina, T. Ishikawa

: SACLA, SPring-8

i, (Y. Seino)

SPring.

Micro-fabrication

- : Osaka University
 - K. Kawai

Y. Inubushi, T. Togashi, T. Yabuuchi, T. Tamasaku, Y. Komura,

Motivation to search for vacuum polarization

- Verification of QED

Vacuum polarization is not observed in a real vacuum.

- <u>Search for new particle</u>

We can also search for new particles beyond the standard model

because these also affects the photon-photon interaction.

ex) Axion, Axion-like particle, Milli charged particle

- Exploration of strong-field QED

We want to explore physical phenomena in a strong-field area that have not yet been explored $^{3}(O(10^{20-30})W/cm^{2})$.

Phenomena caused by vacuum polarization

Vacuum polarization causes several physical phenomena. We can search for vacuum polarization through those phenomena!

Previous searches

Photon-photon scattering experiment

- X-ray free electron laser (XFEL) beams or laser beams are collided, and scattered lights are searched.
- Sensitivities are 10¹⁸ worse than theory.
- Statistic of signal limits the sensitivity.

Vacuum birefringence experiment

- Polarized laser passes a magnetic field of a magnet, and changes of the polarization is searched. Photo
- Sensitivities are $10^2 \sim 10^{11}$ worse than theory.
- Sensitivity is limited since noise is also enhanced by the cavity.

³ worse than theory. 10¹⁴ hits the sensitivity. 10¹²

Ν

Sensitivity of previous searches

ExHILP 16/09/2021

Previous searches

Photon-photon scattering experiment

- X-ray free electron laser (XFEL) beams or laser beams are collided, and scattered lights are searched.
- Sensitivities are 10¹⁸ worse than theory.
- Statistic of signal limits the sensitivity.

Vacuum birefringence experiment

- Polarized laser passes a magnetic field of a magnet, _ Photon-photon scattering experiment and changes of the polarization is searched.
- Sensitivities are $10^2 \sim 10^{11}$ worse than theory.
- Sensitivity is limited since noise is al. New method to increase signals enhanced by the cavity. without the cavity was needed.

Sensitivity of previous searches

 \rightarrow I focused on vacuum diffraction

ExHILP 16/09/2021

Vacuum birefringence experiment

Vacuum diffraction

Vacuum diffraction

is a diffraction of probe light when there is gradient of refractive index in a vacuum due to a localized electromagnetic field(pump light).

Vacuum diffraction

Vacuum diffraction

Place for experiment : XFEL facility SACLA

We can use a high power laser and XFEL at SACLA!

Pump light : 500 TW laser

- We can use from 2018.
- Instantaneously high power laser.
 - Pulse width <u>30 fs</u>
 - Pulse energy <u>12.5 J</u>
 - Wave length <u>800 nm</u>

Probe light : XFEL of SACLA

- Instantaneously high power X-ray pulse.
 - Pulse width <u><10 fs</u>
 - Photons 1011 photon/pulse

Many experiments using laser and XFEL are proposed! ex)European XFEL, Shanghai XFEL

- H. Schlenvoigt et al, Phys. Scr. 91 (2016) 023010
- B. Shen et al, Plasma Phys. Control. Fusion 60 (2018) 044002

 \bullet 500 TW laser is focused to 1 $\mu m.$

- XFEL is focused to 2 µm while keeping the angular divergence low.
- Make XFEL pulse collide head-on with 500 TW laser pulses at its focus.
- A part of XFEL pulse is diffracted. Probability : $\sim 10^{-12}$

Angular divergence : \sim **70 µrad**

14

Key tasks of Research & Development

Key R&D tasks

1. Focusing of the laser

For the strong electromagnetic field and large divergence. Goal is **~1 µm**.

2. Suppressing of backgrounds (BG)

To remove X rays with large angle in the XFEL pulse

3. Making both pulses collide

- <u>Spatially</u>(~µm accuracy)
 Both pulses should be overlapped.
- Tempolary (300 fs acuuracy)

Both pulses should be collided when the laser pulse is focused.

Picture of optical system for laser

0.6 TW laser system

- Ti:Sapphire laser
- Pulse energy 3 mJ(upstream)
- Wavelength 800 nm
- Pulse width 48 fs
- Phase control system

The focusing image is optimized by controlling the phase of laser pulses

Focusing system

Off axis parabolic mirror with a hole (f=50.8mm)

Imaging system

0.6 TW laser system

- **Ti:Sapphire** laser
- Pulse energy 3 mJ(upstream)
- Wavelength 800 nm
- Pulse width 48 fs
- Phase control system

The focusing image is optimized by controlling the phase of laser pulses

Focusing system

Off axis parabolic mirror with a hole (f=50.8mm)

Imaging system

0.6 TW laser system

- **Ti:Sapphire** laser
- Pulse energy 3 mJ(upstream)
- Wavelength 800 nm
- Pulse width 48 fs
- Phase control system

The focusing image is optimized by controlling the phase of laser pulses

Focusing system

Off axis parabolic mirror with a hole (f=50.8mm)

Imaging system

0.6 TW laser system

- Ti:Sapphire laser
- Pulse energy 3 mJ(upstream)
- Wavelength 800 nm
- Pulse width 48 fs
- Phase control system

The focusing image is optimized by controlling the phase of laser pulses

Focusing system

Off axis parabolic mirror with a hole (f=50.8mm)

Imaging system

R&D task 1 : Focusing of laser

R&D task 1

- Focusing of the laser pulse.
- Target size is 1 µm

Solution

 Because distortion of the wavefront makes the focal spot size large,
 I controlled phase of the wavefront and optimized focal spot. Imagine, Mirao 52e

Improvement of the laser size

No phase control

(Focal length 102mm)

With phase control

R&D task2 : Development of beam shaper for BG suppression

R&D task 2

- Suppression of BG
- Target value is BG/(XFEL intensity) < 1e-5

Solution

- BG source : X rays which has large angle in XFEL beam
- Removal by silts generate another BG

R&D task2 : Development of beam shaper for BG suppression

R&D task 2

- Suppression of BG
- Target value is BG/(XFEL intensity) < 1e-5

Solution

- BG source : X rays which has large angle in XFEL beam
- Removal by silts generate another BG

R&D task2 : Development of beam shaper for BG suppression

R&D task 2

- Suppression of BG
- Target value is BG/(XFEL intensity) < 1e-5

Solution

- BG source : X rays which has large angle in XFEL beam
- Removal by silts generate another BG
- I invented an x-ray beam shaper to absorb BG without diffraction.

Shaper

- Si substrate is processed by ion etching
- One-dimension focusing. f=5.4m
- Transmitted beam has gaussian profile
- Angular divergence becomes smaller since beam becomes thin without diffraction

Angular divergence

- Divergence of XFEL beam focused by shaper becomes smaller.
- BG is suppressed as expected.
 (BG rate1×10⁻²→3×10⁻⁵)

R&D task 3 : Techniques for collision Top view of vacuum chamber

 A sample at collision point was used to align position and timing of laser pulse.

Degree of vacuum
 : 3×10⁻³ Pa

R&D task3-1 : Collision technique (Space)

R&D task3-1

• Both pulses should be overlapped.

Target of accuracy is **below XFEL size(15µm)**

- Key point is measurement of relative distance of both pulses Solution
 - To guarantee the overlap certainly, irradiation traces of both pulses were made on the sample placed at the collision point and both positions were compered.

R&D task3-1 : Collision technique (Space)

R&D task3-1

- Both pulses should be overlapped.
 - Target of accuracy is **below XFEL size(15µm)**
- Key point is measurement of relative distance of both pulses

R&D task3-2 : Collision technique (timing)

R&D task3-2

• Both pulses should be collided when the laser pulse is focused. Target of accuracy is **300 fs** (=jitter size)

Solution

I used fast change(<100 fs) in transmittance of GaAs.

fit by two straight line 0.6 0.4 0.4 0.2 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 Timing of laser irradiation [ps]

Transmittance decrease

 \Rightarrow Both pulses are irradiate

at the same time

ExHILP 16/09/2021

Laser transmittance measurement

- GaAs becomes opaque when x rays are absorbed.
- GaAs substrate is placed at focus of laser, and both pulses are irradiated.
- Timing when transmittance decrease is searched, scanning timing of irradiation of the laser. ³²

R&D task3-2 : Collision technique (timing)

R&D task3-2

Both pulses should be collided when the laser pulse is focused.
 Target of accuracy is **300 fs** (=jitter size)

Solution

• I used fast change(<100 fs) in transmittance of GaAs.

Measurement of diffracted x rays & expected signal

180

160

140 120

[/50fs]

Measurement of diffracted x rays

- Diffracted x rays were measured after the alignments.
- Datas w/wo laser were acquired alternately. (XFEL 30Hz, Laser 15 Hz)
- Irradiation timing of the laser was scanned. (interval of each scan step is 0.3 ps)
- 22050 shots of data was obtained.
- XFEL intensity was N=3.46×10⁹ photons/pulse

Expected signal

Angular distribution of signal is effectively calculated by considering XFEL profile and divergence.

- Probability of diffraction : $P=2.1 \times 10^{-22}$ Acceptance : $A=9.5 \times 10^{-3}$ \rightarrow Expected signals : NPA - 7.0 × 10^{-15} mbst
 - \rightarrow Expected signals : NPA = 7.0×10⁻¹⁵ photons/pulse ^{10⁻¹}
- Timing distribution of signal is also calculated by using measured laser images

Future prospects

Main upgrades

- Increase of signal Use SACLA 500 TW laser(12.5 J) Signal increases $(12.5/0.47 \times 10^{-3})^2 = 7 \times 10^8$
- BG suppression

My experiment can induce vacuum diffraction and vacuum birefringence at the same time.

By using both effect to suppress BG, sensitivity increase 5×10^9 .

Future experiment

By these upgrades, signal and BG will be 4.1 photons,

1.6±0.2(stat)photons by 20 days DAQ. Vacuum diffraction will be observed!

Setup of future experiment

Summary

- Vacuum polarization is predicted by QED and affects photon interaction.
- Sensitivity of previous researches are limited by some reasons.
- Vacuum diffraction experiment overcomes these problems.
- For the experiment, I developed
 - Focusing system of laser with phase control system
 - X-ray beam shaper for BG suppression
 - Alignment techniques to collide both pulse spatially and temporally
- Vacuum diffraction was searched by using SACLA XFEL and 0.6 TW laser
- Though signal was not obtained, first experimental limit was obtained. (Measured photons)/(Theory) $< 2.3 \times 10^{18}$ (90% C.L.)
- Vacuum diffraction will be observed by using 500 TW laser of SACLA