E-320: Probing Strong-field QED at FACET-II

ExHILP 2021

September 15, 2021

Elias Gerstmayr

(for the E-320 collaboration)

This work has been funded by FES Award DE-SC0020076

Additional support: Cindy Patty, Doug McCormick, Juan Cruz, Nadya Smith, the PULSE Team (in particular Ritu Khurana), B40 Laserlab: Shambhu Ghimire, and many more

E-320 Collaboration (SLAC/FACET-II)

Carleton University, Ottawa, Ontario, Canada	Thomas Koffas
Aarhus University, Aarhus, Denmark	Christian Nielsen, Allan Sørensen, Ulrik Uggerhøj
École Polytechnique, Paris, France	Sébastien Corde, Pablo San Miguel Claveria
Technical University (TU) of Darmstadt	Christian Rödel
Max-Planck-Institut für Kernphysik, Heidelberg, Germany	Antonino Di Piazza, Christoph H. Keitel, Matteo Tamburini, Tobias Wistisen
Helmholtz-Institut Jena and University of Jena, Germany	Harsh, Felipe Salgado, Jannes Wulff, Matt Zepf
Universidade de Lisboa, Portugal	Thomas Grismayer, Luis Silva, Marija Vranic
Imperial College London, UK	Stuart Mangles, Robbie Watt
Queen's University Belfast, UK	Niall Cavanagh, Gianluca Sarri, Matthew Streeter
California Polytechnic State University, CA USA	Liam Frank, Robert Holtzapple, Jack Kloeckl, Madison Singleton
Lawrence Livermore National Laboratory, CA USA	Félicie Albert
SLAC National Accelerator Laboratory and Stanford PULSE Institute, Menlo Park, CA USA	Phil Bucksbaum, Zhijiang Chen, Christine Clarke, Angelo Dragone, Frederico Fiuza, Alan Fry, Elias Gerstmayr, Spencer Gessner, Siegfried Glenzer, Tais Gorkhover, Carsten Hast, Mark Hogan, Erik Isele, Chris Kenney, Stephan Kuschel Sebastian Meuren (PI), Rafi Mir-Ali Hessami, Brendan O'Shea, David Reis, Douglas Storey, Glen White, Vitaly Yakimenko
University of California Los Angeles, CA USA	Chan Joshi, Warren Mori, Brian Naranjo , James Rosenzweig , Oliver Williams, Monika Yadav
University of Colorado Boulder, CO USA	Robert Ariniello, Keenan Hunt-Stone, Michael Litos
University of Nebraska - Lincoln, NE USA	Ozgur Culfa, Matthias Fuchs, Kyle Jensen, Ethan Welch

3

E-320: observing photo-induced vacuum decay

E-144: multi-photon pair production

"Positron Production in Multiphoton Light-by-Light Scattering" E-144 PRL 79, 1626 (1997)

E-320: tunneling pair production

Photon \rightarrow virtual pair \rightarrow tunneling \rightarrow real pair (local constant field approximation)

Analogous to tunnel ionization

E-320 parameters and perspectives at FACET-II (SLAC)

TABLE V. Single-bunch, high-quality mode parameters.

Parameter (units)	Value
Final beam energy E_f (GeV)	13.0
Bunch charge Q_b (nC)	2.0
rms bunch length σ_z (mm)	0.1
β^* (m)	10
Final rms energy spread, dE/E (%)	0.05

FACET-II: Yakimenko et al., PRAB 22, 101301 (2019)

Energy ^a [J]	Duration ^b [fs]	Power [TW]		${ m Spot}^{ m d}$ [μ m]	Strehl	$\frac{\text{Intensity}}{[W/cm^2]}$	a_0	χ
0.30	50	5.6			0.4	$4.7 imes 10^{19}$	4.7	0.68
0.44	40	10		2.00(1.67)	0.6	1.3×10^{20}	7.8	1.1
0.60	35	16			0.7	2.3×10^{20}	10	1.5
1.28	35	34		1.85 (1.48)	0.6	5.0×10^{20}	15	2.2
4.0	35	107		1.94(1.55)	0.7	1.7×10^{21}	28	4.0
a Total or	orrest offer co	mprossor	h	Constant to the second	1	- Cla :		

 $^{\rm a}$ Total energy after compressor

^a Total energy after compressor ^b Gaussian temporal profile, intensity FWHM ^c Flattop, diameter before OAP ^d intensity FWHM (limit given by Airy disk)

Existing laser

Potential upgrade

E-320 parameters and perspectives at FACET-II (SLAC)

Single-bunch, high-quality mode parameters. TABLE V.

Parameter (units)	Value
Final beam energy E_f (GeV)	13.0
Bunch charge Q_b (nC)	2.0
rms bunch length σ_z (mm)	0.1
β^* (m)	10
Final rms energy spread, dE/E (%)	0.05

FACET-II: Yakimenko et al., PRAB 22, 101301 (2019)

- KPPs have been exceeded (June 2021)
- First experiment beam time (August 2021)

Key performance Parameter	Threshold KPP	Achieved
Particle Energy	> 9 GeV	9.3 GeV
Bunch Charge	> 0.1 nC	0.4 nC
Normalized Emittance in Sector 19	50 mm-mrad	25 mm-mrad
Bunch Length	< 100 µm	70 µm

Energy ^a [J]	Duration ^b [fs]	Power [TW]		${ m Spot}^{ m d} \ [\mu { m m}]$	Strehl	$\frac{\text{Intensity}}{[W/cm^2]}$	a_0	χ
0.30	50	5.6			0.4	4.7×10^{19}	4.7	0.68
0.44	40	10		2.00(1.67)	0.6	1.3×10^{20}	7.8	1.1
0.60	35	16			0.7	2.3×10^{20}	10	1.5
1.28	35	34		1.85(1.48)	0.6	$5.0 imes 10^{20}$	15	2.2
4.0	35	107		1.94(1.55)	0.7	1.7×10^{21}	28	4.0
^a Total er	nergy after co	mpressor	b	Gaussian ten	nporal pr	ofile, intensit	y F W	ΉM

^c Flattop, diameter before OAP ^d intensity FWHM (limit given by Arry disk)

Existing laser

Potential upgrade

Achieved laser parameters (July 2021):

- Compressed pulse duration: 45 fs FWHM
- Amplified laser energy:
 - Energy on target:

~ 475 mJ

750 mJ

(not amplified)

(before losses)

(estimated) 6

M. Hogan

Interaction region and detectors are spatially separated

New spectrometer beamline (Storey): positron/low-energy electron diagnostics

E-320 Interaction Point (IP) in the "Picnic Basket"

Dump table: Electron/gamma diagnostics 7

Interaction geometry and laser diagnostics

Interaction geometry

- 1st OAP focuses laser pulse (f/d = 1.91)
- e-beam/laser collision at 28.07°
- 2nd OAP re-collimates laser pulse

FWHM	2.665 um
(ideal)	(1.65 um)
Enclosed Energy	37.70%

Alignment Targets

- Beam/laser spatial overlap: Ce:YAG screen/needle
- Pinhole for alternative OAP alignment

Laser diagnostics/control

- NF/FF diagnostics before/after IP
- Focal spot diagnostic
- Wavefront sensor
- Deformable mirror
- Interferometer for OAP alignment

E-320 interaction point in the picnic basket

Fitting test in the picnic basket (May 2021)

Interferometric alignment enables post-IP laser diagnostic Legender PULSE Institute

- Tested with flat optics (July 2021)
- Currently using OAPs to test alignment procedure

New beamline for positron and electron detection

Two spectrometer screens for electron detection

- EDC for low-energy electrons at low numbers
- Dump for high-energy electrons at high numbers

CAD design

Installation and imaging completed (July 2021)

First beam on screen (August 2021)

FACET-II dump table diagnostics

- **Gamma1** (Csl array with 0.5mm x 0.5mm pixels) \rightarrow photon intensity/angular profile
- **LFOV** (large FOV e⁻ profile monitor)
- **SFQED-e** (higher resolution, brighter e⁻ profile)
 - → DRZ/CsI scintillator screens
- Electron spectrometer screen (DRZ)

14

Breakdown of the LCFA at small photon energies

Pair spectrometer to resolve full gamma spectrum

- 2021 (fall): calibrate detectors, measure backgrounds, access perturbative regime: $a_0 \lesssim 1$ (~10¹⁸ W/cm²)
- 2021 (winter): observe the transition to nonperturbative laser-electron interactions: $a_0 \gtrsim 5 (\gtrsim 10^{19} \text{ W/cm}^2)$

Future science program

Esberg et al., PRSTAB 17, 051003 (2014)

Laboratory Astrophysics: Understanding Magnetars

 $\chi{\gtrsim}2$: onset of QED cascades

News 09 JUNE 2020 Nature 582, 322-323 (2020) Astronomers spot first fast radio burst in the Milky Way The nearby burst came from a magnetized star – and provides a close-up view of one of astronomy's biggest puzzles.

Beamstrahlung Mitigation: Short-Bunch Paradigm

- plasma lens: transverse size ≤ µm
- 90° collisions: interaction time \lesssim 6 fs

Photon-Photon Collider (gamma/optical): 2nd IP \rightarrow Vacuum Birefringence

• 12.9 keV x-ray + 100 PW \leftrightarrow 6 GeV γ + 100 TW

Quantum Coherence in Extreme Conditions

Energy ^a [J]	Duration ^b [fs]	Power [TW]	Diameter ^c [mm]	Optics	$\begin{array}{c} \text{OAP} \\ f_{\#} \end{array}$	${ m Spot}^{{ m d}}$ [μ m]	Strehl	$\frac{\text{Intensity}}{[W/cm^2]}$	a_0	χ
$\begin{array}{c} 0.30\\ 0.44\end{array}$	$50\\40$	$5.6\\10$	40	3"	2.0	2.00 (1.67)	$\begin{array}{c} 0.4 \\ 0.6 \end{array}$	4.7×10^{19} 1.3×10^{20}	4.7 7.8	$\begin{array}{c} 0.68\\ 1.1 \end{array}$
0.60	35	16					0.7	2.3×10^{20}	10	1.5
1.28	35	34	60	4"	1.8	1.85(1.48)	0.6	5.0×10^{20}	15	2.2
4.0	35	107	100	6"	1.9	1.94(1.55)	0.7	1.7×10^{21}	28	4.0

Laser upgrade: 100 TW scale to start probing $\chi \gg 1$

^a Total energy after compressor

^c Flattop, diameter before OAP

^b Gaussian temporal profile, intensity FWHM

^d intensity FWHM (limit given by Airy disk)

Beamline upgrade: introduce 2nd IP for photon-photon collider

- Compton backscattering: 13 GeV + 3rd harmonic
 → 6 GeV gamma photons, polarization control
- Requires a dogleg / chicane to deflect main beam
- Access to a new level of control, rich new physics
 program, e.g., vacuum dichroism/birefringence

Detector upgrades

- Pair spectrometer (access to full gamma spectrum)
- Silicon tracking detectors (positron energy spectrum)

Thank you for your attention