

WEIZMANN INSTITUTE OF SCIENCE

Outline

- Introduction (but mostly see Beate's talk!)
- Measurements \& Challenges
- Technologies

The European PhYsical Journal Special Topics https://doi.org/ $10.1140 /$ /ep.js/s11734-021-00249-z

Review

Conceptual design report for the LUXE experiment
H. Abramowicz ${ }^{1}$, U. Acosta ${ }^{2,3}$, M. Altarelli ${ }^{4}$, R. Aßmann ${ }^{5}$, Z. Bai ${ }^{6}{ }^{6}$, T. Behnke ${ }^{5}$, Y. Benhammou ${ }^{1}$,
 K. Büßer ${ }^{5}$, N. Cavanagh ${ }^{12}$, O. Davidi ${ }^{6}$, W. Decking ${ }^{5}$, U. Dosselli ${ }^{13}$, N. Elkina ${ }^{3}$, A. Fedotov ${ }^{14}$, M. Firlej ${ }^{15}$ T. Fiutowski ${ }^{15}$, K. Fleckk ${ }^{12}$, M. Gostkin ${ }^{16}$, C. Grojean ${ }^{5,30}$, J. Hallford ${ }^{5}, 17$, H. Harsh ${ }^{18,19}$, A. Hartin ${ }^{17}$ B. Heinemann ${ }^{5,20, \mathrm{a}} 0$, T. Heinzl ${ }^{21}$, L. Helary ${ }^{5}$, M. Hoffmann ${ }^{5,20}$, S. Huang ${ }^{1}$, X. Huang ${ }^{5,18,20}$, M. Idzik ${ }^{15}$ A. Ilderton ${ }^{21}$, R. Jacobs ${ }^{5}$, B. Kämpfer ${ }^{2,3}$, B. King ${ }^{21}$, H. Lahno ${ }^{10}$, A. Levanon ${ }^{1}$, A. Levy ${ }^{1}$, I. Levy ${ }^{21}$, J. List ${ }^{5}$, W. Lohmann ${ }^{5,31}$, T. Ma ${ }^{23}$, A. J. Macleod ${ }^{21}$, V. Malka ${ }^{6}$, F. Meloni ${ }^{5}$, A. Mironov ${ }^{14}$, M. Morandin ${ }^{13}$, J. Moron ${ }^{15}$, E. Negodin ${ }^{5}$, G. Perez ${ }^{6}$, I. Pomerantz ${ }^{1}$, R. Pöschl ${ }^{24}$, R. Prasad ${ }^{5}$, F. Quéréé ${ }^{25}$, A. Ringwald ${ }^{5}$, C. Rödel S. Rykovanov ${ }^{27}$, F. Salgado ${ }^{18,19}$, A. Santra ${ }^{6}$, G. Sarri ${ }^{12}$, A. Sävert ${ }^{18}$, A. Sbrizzi 28,32, S. Schmit ${ }^{5}$,
U. Schramm ${ }^{2,3}$, S. Schuwalow ${ }^{5}$, D. Seipt ${ }^{18}$, L. Shaimerdenova ${ }^{29}$, M. Shchedrolosiev ${ }^{5}$, M. Skakunov ${ }^{29}$, Y. Soreq ${ }^{23}$, M. Streeter ${ }^{12}$, K. Swientek ${ }^{15}$, N. Tal Hod ${ }^{6}$, S. Tang ${ }^{21}$, T. Teter ${ }^{18,19}$, D. Thoden ${ }^{5}$, A. I. Titov ${ }^{16}$ O. Tolbanov ${ }^{29}$, G. Torgrimsson ${ }^{3}$, A. Tyazhev ${ }^{29}$, M. Wing ${ }^{5,17}$, M. Zanetti ${ }^{13}$, A. Zarubin ${ }^{29}$, K. Zeil ${ }^{3}$, M. Zepf ${ }^{18,19}$, and A. Zhemchukov ${ }^{16}$

LUXE physics in a nutshell

- Nonlinear Compton scat. \longrightarrow Nonlinear Breit-Wheeler pair prod.
- Characterised by two dimensionless parameters:
- Laser intensity $\xi \propto \frac{\epsilon}{\epsilon_{\mathrm{S}}}$ and Quantum parameter $\chi \propto \frac{E}{m_{e}} \xi$
- Non-perturbativity: $\xi \geq \frac{1}{\sqrt{x}} \gg 1$
- Fermions inside the pulse are Volkov states:

coupling between charge and
radiation field, α

Large boost
$\gamma=E / m_{e}$

Large E-field

Pair production
Field is larger by E / m_{e} in the rest frame

SFQED Signals: Compton $\boldsymbol{e} \boldsymbol{\&} \boldsymbol{\gamma}$

SFQED Signals: BW $\boldsymbol{e}^{+}\left(\boldsymbol{e}^{-}\right)$

Bkg rates at the detector faces

- Full GEANT4 simulation
- beam only (no collisions)
- heavily mitigated with shielding already
- largest source: where the e-beam exits the vacuum
- Not all particles will register an electronic response
- most very low energetic
- Still, detectors job is to:
- massively reject bkgs
- resolve huge signals

Bkg rates at the detector faces

- Full GEANT4 simulation
- beam only (no collisions)
- heavily mitigated with shielding already
- largest source: where the e-beam exits the vacuum
- Not all particles will register an electronic response
- most very low energetic
- Still, detectors job is to:
- massively reject bkgs
- resolve huge signals

Bkg rates at the detector faces

- Full GEANT4 simulation
- beam only (no collisions)
- heavily mitigated with shielding already
- largest source: where the e-beam exits the vacuum
- Not all particles will register an electronic response
- most very low energetic
- Still, detectors job is to:
- massively reject bkgs
- resolve huge signals

Bkg rates at the detector faces

- Full GEANT4 simulation
- beam only (no collisions)
- heavily mitigated with shielding already
- largest source: where the e-beam exits the vacuum
- Not all particles will register an electronic response
- most very low energetic
- Still, detectors job is to:
- massively reject bkgs
- resolve huge signals

IP detectors - current design

Pixel tracker

LUXE tracker has 8 staves in each arm of the tracker
"Stave" has 9 chips (by ALICE at CERN)

ALPIDE: Monolithic Active Pixel Sensor 512×1024 pixels of $27 \times 29 \mu^{2}$ in a $3 \times 1.5 \mathrm{~cm}^{2}$ chip
(by TowerJazz+ALICE at CERN)

Fired pixels are clustered and tracks are fitted to extract the momentum of the particle using the B - field knowledge

High-granularity compact calorimeter

20 layers of 3.5 mm thick tungsten plates and sensors in 1 mm gaps between plates

Silicon sensor with pad size of $5 \times 5 \mathrm{~mm}^{2}$ and an assembly thickness of $<700 \mu \mathrm{~m}$

Scintillating screen \& camera

- Terbium-doped Gadolinium Oxysulfide
- high output photon \# above the ambient background light
- One 2k-pixel camera: position res. is $<500 \mu \mathrm{~m}$ (better with more cameras)
- Light/charge calibration from measured light curve from testbeam
$500 \mu \mathrm{~m}$ GadOx: particles depositing energy induce an isotropic and \sim monochromatic $(\sim 545 \mathrm{~nm})$ fluorescent photons emission

- Energy determined from the position along the screen and the B-field
- Linear response up to 350 pC (high fluxes!) demonstrated by AWAKE

Cherenkov counter

- More agnostic to lowenergy (non-signal) particles than the screen
- We don't yet have results for the new TRT concept - CDR design relied on polarimetry detector for future lepton colliders

ATLAS spare TRT straws, segmented in a few rows, openly coupled to SiPMs on the top (gas flow) and to fibres for calibration at the bottom

Forward photon spectrometer

- Same GadOx screen (both sides now!)
- CDR: particles travelling in air (now in vacuum)
- much more background earlier
- signal photons were also converted in air
- Possibly measure $\mathrm{d} N / \mathrm{d} E(x) / \mathrm{d} y$ to extract info
 about the beam shape

Backscattering calorimeter

- Measure back-scattered energy deposit from the last dump
- Precision in the number of photons is $\Delta N_{\gamma}=\frac{\partial N_{\gamma}}{\partial E_{\text {dep }}} \Delta E_{\text {dep }}$ where the derivative is the slope (MC)
- $\Delta E_{\text {dep }}$ is the inherent spread of the back-scattered particles
- Typically we can expect that $\Delta N_{\gamma} / N_{\gamma} \lesssim 10 \%$

Eight TF-101 type lead-glass blocks of size $3.8 \times 3.8 \times 45 \mathrm{~cm}^{3}$ connected to PMTs

Photon beam profiler

- Measure the beam σ_{T} and $\sigma_{\|}$to extract ξ value at the IP and measure γ_{C} rate
- Typical emission angle in the lab frame is $\theta \sim 1 / \gamma$ - LUXE: $\theta \sim 0.031 \mathrm{mrad}$ so, $\sim 310 \mu \mathrm{~m}$ after 10 m
- For $\xi \gg 1$ there are two relevant angles wrt the polarisation direction: $\theta_{\|} \sim \xi / \gamma$ in the and $\theta_{\perp} \sim 1 / \gamma$

First Order Fundamental Radiation

Second Order Harmonic Radiation

Two orthogonal $2 \times 2 \mathrm{~cm}^{2}$ and $100 \mu \mathrm{~m}$ thick Sapphire strip planes (huge dose!) with $100 \mu \mathrm{~m}$ pitch and an analog RO

New Physics@ Optical Dump

$N_{\gamma} / N_{e} \sim 1.7$ for $E_{\gamma}>1 \mathrm{GeV}$ with $\tau_{\text {pulse }}=120 \mathrm{fs}$ and $w_{0}=10 \mu \mathrm{~m}$

$$
\mathscr{L}_{a}=\frac{a}{4 \Lambda_{a}} F_{\mu \nu} \tilde{F}^{\mu \nu}+i \text { igae }_{a e^{\text {ignere today }}} a \bar{e} \gamma^{5} e
$$

EMCal requirements:

- $\sigma_{t} \sim \mathcal{O}(100 \mathrm{ps})$
- $\sigma_{x, y} \sim \mathcal{O}(100 \mu \mathrm{~m})$
- $\sigma_{\theta} \sim \mathcal{O}(10 \mathrm{mrad})$

New Physics@Optical Dump

$N_{\gamma} / N_{e} \sim 1.7$ for $E_{\gamma}>1 \mathrm{GeV}$ with $\tau_{\text {pulse }}=120 \mathrm{fs}$ and $w_{0}=10 \mu \mathrm{~m}$

EMCal requirements:

- $\sigma_{t} \sim \mathcal{O}(100 \mathrm{ps})$
- $\sigma_{x, y} \sim \mathcal{O}(100 \mu \mathrm{~m})$
- $\sigma_{\theta} \sim \mathcal{O}(10 \mathrm{mrad})$

The LUXE-NPOD can be bkg-free and better than other players in the field

Outlook

- LUXE is a new exciting experiment with a novel baseline plan
- test QED predictions in a region of $\xi-\chi$ never explored before cleanly
- search for new physics exploiting the optical dump concept
- very streamlined: take data in early ~ 2025
- The detector system provides redundancy over a huge dynamic range
- didn't discuss the detailed analysis techniques (track-fitting, shower characterisation, edge finding, beam profiling algs, etc.)
- didn't discuss the $\gamma+$ laser setup (concepts are very similar)
- didn't discuss the DAQ, triggering and combined operation - next time!

Backup

What happens in strong fields?

The Schwinger critical field (1951)
$\epsilon_{\mathrm{S}}=\frac{m_{e}^{2} c^{3}}{e \hbar} \simeq 1.32 \cdot 10^{18} \frac{\mathrm{~V}}{\mathrm{~m}}$

The probability to materialise one virtual $e^{+} e^{-}$pair from the vacuum $P \sim \exp \left(-a \frac{\epsilon_{\mathrm{S}}}{\epsilon}\right) \begin{gathered}\text { non-perturbative } \\ \text { with } \epsilon \longrightarrow \epsilon_{\mathrm{S}}\end{gathered}$

[^0]
History \& Impact

LUXE@ the Eu.XFEL

Passed a detailed review process by an international committee. of experts Got the "Critical Decision 0" (CD0) approval from the DESY directorate
 ${ }^{2}{ }^{2}$ National Research Tomsks Suate University NTM TSU, TSU, Russia

$$
\epsilon_{\text {Laser }} \rightarrow \epsilon_{\text {Laser }} \times \frac{E_{e} \sim 10 \mathrm{GeV}}{m_{e} \sim 0.5 \mathrm{MeV}} \sim \epsilon_{\text {Laser }} \times 10^{4}
$$

Electrons	E_{e} up to $\mathbf{1 6 . 5} \mathbf{~ G e V}$, with $\boldsymbol{N}_{e}=\mathbf{1 . 5 \times 1 0 ^ { 9 }} \boldsymbol{e}-/$ bunch and a bunch charge up to 1.0 nC,
	$1 / 2700$ bunches/train, $\sim 1+9 \mathrm{~Hz}$ (collisions+background), spot $\mathrm{r}_{\mathrm{xy}}=5 \mu \mathrm{~m}, \mathrm{l}_{z}=24 \mu \mathrm{~m}$
Laser	Ti-Sapphire, $800 \mathrm{~nm}, \mathbf{4 0 / 3 5 0} \mathbf{~ T W}$, up to $\sim 10 \mathrm{~J}, \sim 10 \mathrm{~Hz}$ repetition, 60% losses
	$\sim 30-200$ fs pulse length, down to $3 \times 3 \mu \mathrm{~m}^{2}$ FWHM spot with up to $I \sim 10^{21} \mathrm{~W} / \mathrm{cm}^{2}$

The Hawking equivalent

- Outside observer: the BH has radiated a particle so the energy must come from it
- Looking at the system: the BH energy has decreased so its mass must decrease

Why strong field physics?

- Reaching ϵ_{S} is equivalent e.g. to the measurement of the anomalous magnetic moment or the coupling constant and deviations could be a hint for new physics
- Non-perturbative QFT is still being actively developed
- Can provide insight into the vacuum state / Higgs mechanism
- Schwinger effect proposed as mechanism for reheating in the early universe
- New physics opportunities with strong field (ALPs, mCPs,...)

The Schwinger mechanism simplified

- Force of external static electric field is:
- Energy to separate the virtual pair in a distance d:
- Energy required to materialise as a real pair:
$F=e \epsilon$
$E=F \cdot d=e \epsilon \cdot d$
- Condition to materialise as a real pair in distance d: $E=2 m_{e} c^{2}$
- Compton wavelength (typical scale):
$e \epsilon d=2 m_{e} c^{2}$
- Probability for d:

$$
P \propto \exp \left(-\frac{d}{\lambda_{C}}\right)=\exp \left(-2 \frac{m_{e}^{2} c^{3}}{\hbar e \epsilon}\right)=\exp \left(-2 \frac{\epsilon_{\mathrm{S}}}{\epsilon}\right) \quad \epsilon_{\mathrm{S}}=\frac{\boldsymbol{m}_{e}^{2} c^{3}}{\hbar e} \simeq 1.3 \cdot 10^{18} \frac{\mathbf{V}}{\mathbf{m}}
$$

$\lambda_{\mathrm{C}}=\hbar /\left(m_{e} c\right)$

The Furry Picture vacuum

The $2^{\text {nd }}$ quantisation of the Dirac field relies on a gap between the positive and negative energy solutions

- The external field "closes" this energy gap
- Electrons are lifted from the sea to leave the vacuum charged
- The VEV of the EM current must no longer vanish
- Separation into creation and destruction operators is problematic
- This point is the limit of the validity of the Furry picture

The Furry Picture

- If the external field is sufficiently strong: quantum interactions with it leave it essentially unchanged and it can be considered to be a classical background field
- Separate the gauge field to external and quantum parts:
$\mathscr{L}_{\mathrm{Int}}=\bar{\psi}(i \not \partial-m) \psi-\frac{1}{4} F_{\mu \nu}^{2}-e \bar{\psi}\left(X_{\text {ext }}+\not \subset\right) \psi$ and shift $X_{\text {ext }}$ to the Dirac component: $\mathscr{L}_{\mathrm{FP}}=\bar{\psi}^{\mathrm{FP}}\left(i \not \partial-e X_{\text {ext }}-m\right) \psi^{\mathrm{FP}}-\frac{1}{4} F_{\mu \nu}^{2}-e \bar{\psi}^{\mathrm{FP}} A \psi^{\mathrm{FP}}$
- The FP Lagrangian satisfies the Euler-Lagrange equation.
- New equation of motion for the non-perturbative (bound) Dirac field (wrt $A_{\text {ext }}$) and new solutions $\psi^{\mathrm{FP}}:\left(i \not \partial-e \mathbb{K}_{\text {ext }}-m\right) \psi^{\mathrm{FP}}=0$
- Exact solutions exist for a certain classes of external fields (plane waves, Coloumb fields and combinations) [Volkov Z Physik 94250 (1935), Bagrov \& Gitman 1990]:
$\psi^{\mathrm{FP}}=\mathbf{E}_{p} e^{-i p x} u_{p}$ with $\mathbf{E}_{p}=\operatorname{Exp}\left[-\frac{1}{2 k \cdot p}\left(e \AA_{\mathrm{ex}} \mathcal{K}+i 2 e\left(A_{\mathrm{ext}} \cdot p\right)-i e^{2} A_{\mathrm{ext}}^{2}\right)\right]$

Trident process (vacuum resonance)

Photon splitting (vacuum birefringence)

High intensity Compton scatter (HICS)

One photon pair production (OPPP)

Boiling point of QED

- Weak fields: many accurate predictions of observables through ordinary perturbative expansion in the EM coupling (α_{EM})
- Strong fields: observables become inaccessible through ordinary perturbative expansion and there's no experimental verification
- For example: the spontaneous e+e- pair production (SPP) rate per unit volume in strong static E-field is:

$$
\frac{\Gamma_{\mathrm{SPP}}}{V_{e^{-}}}=\frac{m_{e}^{4}}{(2 \pi)^{3}}\left(\frac{|\mathbf{E}|}{\mathrm{E}_{\mathrm{c}}}\right)^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} e^{-n \pi \frac{\mathrm{E}_{\mathrm{c}}}{|\mathbf{E}|}} \sim e^{-\frac{\pi m_{e}^{2}}{e^{|\mathrm{E}|}}}
$$

> But how to produce static E-field of the order of $\sim 1.3 \times 10^{18} \mathrm{~V} / \mathrm{m} ? ? ?$

Lasers strong field "how-to"

- Laser-assisted one photon pair production, OPPP (SPP $\longrightarrow \mathrm{OPPP}$)
- the laser's E-field frequency is ω, with momentum $k=(\omega, \mathbf{k})$
- the laser's E-field strength is $|\epsilon|$, with $I \sim|\epsilon|^{2}$
- The $e^{+} e^{-}$pair picks up momentum from the laser photons
- OPPP rate is a function of the laser intensity ξ and the photon recoil χ :

Dimensionless and
Lorentz-invariant $\left\{\begin{array}{l}\text { Laser intensity : } \xi=\frac{e|\epsilon|}{\omega m_{e}}=\frac{m_{e}}{\omega} \frac{|\epsilon|}{\epsilon_{\mathrm{S}}} \\ \text { Photon recoil : } \chi_{\gamma}=\frac{k \cdot k_{i}}{m_{e}^{2}} \xi=(1+\cos \theta) \frac{\omega_{i}}{m_{e}} \frac{|\epsilon|}{\epsilon_{\mathrm{S}}}\end{array}\right.$

$$
\text { Initial photon }: k_{i}=\left(\omega_{i}, \mathbf{k}_{i}\right)
$$

Understanding $\boldsymbol{\xi}$

Electron "at rest"

Infinite E-field plane wave with frequency ω

The electron will oscillate with frequency ω and radiate in turn: $e E=m_{e} a$

The electron's maximum velocity is: $v_{\max }=a \cdot \Delta t=\frac{e E}{m_{e}} \cdot \frac{1}{\omega}$
Normalise to $c: \xi \equiv \frac{v_{\max }}{c}=\frac{e E}{\omega m_{e} c}$ (dimensionless \& Lorentz-invariant)
ξ reaches unity for e.g. a $\lambda=800 \mathrm{~nm}$ laser at an intensity of $I \sim 10^{18} \mathrm{~W} / \mathrm{cm}^{2}$

Understanding χ

Scattering geometry: $k \cdot k_{i}=\omega \omega_{i}-|\mathbf{k}|\left|\mathbf{k}_{i}\right| \cos (\pi-\theta)=\omega \omega_{i}(1+\cos \theta)$

$$
\chi=\frac{k \cdot k_{i}}{m_{e}^{2}} \xi=\frac{\omega \omega_{i}(1+\cos \theta)}{m_{e}^{2}} \frac{e \epsilon}{\omega m_{e} c}=(1+\cos \theta) \frac{\omega_{i}}{m_{e}} \frac{\epsilon}{\epsilon_{\mathrm{S}}} \stackrel{\frac{1}{\epsilon_{\mathrm{S}}}=\frac{e}{m_{e}^{2}}}{\hbar=c=1}
$$

OPPP rate: $\Gamma_{\text {OPPP }} \propto F\left(\xi, \chi_{\gamma}\right)$

$$
\begin{aligned}
& \begin{array}{c}
\text { Sum on number of } \\
\text { absorbed laser } \gamma \text { 's }
\end{array} \\
& F_{\gamma}\left(\xi, \chi_{\gamma}\right)=\sum_{n>n_{0}}^{\vdots} \int_{1}^{v_{n}} \frac{\mathrm{~d} v}{v \sqrt{v(v-1)}}\left[2 J_{n}^{2}\left(z_{v}\right)+\xi^{2}(2 v-1)\left(J_{n+1}^{2}\left(z_{v}\right)+J_{n-1}^{2}\left(z_{v}\right)-2 J_{n}^{2}\left(z_{v}\right)\right)\right]
\end{aligned}
$$

threshold number
of absorbed $\gamma^{\prime} \mathrm{s}$

As the laser intensity ξ increases

- the threshold number of absorbed photons increases
- more terms in the summation drop out of the probability

> Assumption1: the laser E-field is a circularly polarised infinite plane wave
> Assumption2: we can produce a mono-energetic photon beam with $\sim O(10 \mathrm{GeV})$

Compton edges

- With increasing laser intensity ξ :
- higher order (n) contributions become more prominent
- edge shifts to lower energies due to electron's higher effective mass
- Cannot go much beyond $\xi \sim 1$ to produce high energy photons

The rate is a series of Compton edges for $\mathrm{n}=1,2,3, \ldots$ absorbed photons and the edges shift down with increasing ξ
16.5 GeV electron, 800 nm laser, 17.2° crossing angle

$\Gamma_{\text {OPPP }}$ asymptotically

$$
\begin{aligned}
& \Gamma_{\mathrm{OPPP}} \longrightarrow \frac{3}{16} \sqrt{\frac{3}{2}} \alpha m_{e}(1+\cos \theta) \frac{|\epsilon|}{\epsilon_{\mathrm{S}}} \exp \left(-\frac{8}{3} \frac{1}{1+\cos \theta}\left(\frac{m_{e}}{\omega_{i}} \frac{\epsilon_{\mathrm{S}}}{|\epsilon|}\right)\right) \\
& \omega_{i} \sim \mathcal{O}(10 \mathrm{GeV}) \mathrm{mm}^{k_{i}} \sim \begin{array}{l}
e^{+} e^{-} \text {pair is boosted and } \\
\text { the E-field is enhanced }
\end{array}
\end{aligned}
$$

- Unlike SPP, the $e^{+} e^{-}$pair (in its rest frame) experiences an E-field enhanced by the relativistic boost factor: $|\epsilon| \rightarrow|\epsilon| \times \omega_{i} / m_{e}$
- However, mono-energetic photon beams with energies in the $\omega_{i} \sim \mathcal{O}(10 \mathrm{GeV})$ range are not available...

High-energy photons?

- $\mathrm{An} \sim \mathcal{O}(10 \mathrm{GeV})$ electron beam can be sent onto a high-Z target
- Converted into a collimated high-energy γ-beam (Bremsstrahlung)
- These photons are crossed with the high-intensity laser beam
- Laser-assisted bremsstrahlung photon pair production (BPPP)

E_{e} is the energy of the incident electrons

$$
\text { Recall : } \Gamma_{\mathrm{OPPP}}=\frac{\alpha m_{e}^{2}}{4 \omega_{i}} F\left(\xi, \chi_{\gamma}\left(\omega_{i}\right)\right)
$$

$$
\Gamma_{\mathrm{BPPP}}=\frac{\alpha m_{e}^{2}}{4} \int_{0}^{E_{e}} \frac{d \omega_{i}}{\omega_{i}} \frac{d N_{\gamma}}{d \omega_{i}} F_{\gamma}\left(\xi, \chi_{\gamma}\left(\omega_{i}\right)\right)
$$

Asymptotically

- For a target of thickness $X \ll X_{0}$, where X_{0} is the radiation length:

$$
\omega_{i} \frac{d N_{\gamma}}{d \omega_{i}} \approx\left[\frac{4}{3}-\frac{4}{3}\left(\frac{\omega_{i}}{E_{e}}\right)+\left(\frac{\omega_{i}}{E_{e}}\right)^{2}\right] \frac{X}{X_{0}}
$$

- Similarly to OPPP, replacing χ_{γ} with χ_{e}, the BPPP rate is:

$$
\Gamma_{\mathrm{BPPP}} \longrightarrow \frac{\alpha m_{e}^{2}}{E_{e}} \frac{9}{128} \sqrt{\frac{3}{2}} \frac{X}{X_{0}} \chi_{e}^{2} e^{-\frac{8}{3 \gamma_{e}}\left(1-\frac{1}{15 \xi^{2}}\right)}
$$

History: E144 @ SLAC

- 46.6 GeV electron beam
- 5×10^{9} electrons per bunch
- Bunch rates up to 30 Hz
- Terawatt laser pulses
- Intensity of $\sim 0.5 \times 10^{18} \mathrm{~W} / \mathrm{cm}^{2}$
- Frequency of 0.5 Hz for wavelengths $1053 \mathrm{~nm}, 527 \mathrm{~nm}$
- electrons-laser crossing angle: 17°

History: E144@ SLAC

FIG. 44. The dependence of the positron rate per laser shot on the laser field-strength parameter η. The line shows a power law fit to the data. The shaded distribution is the 95% confidence limit on the residual background from showers of lost beam particles after subtracting the laser-off positron rate.

FIG. 49. Number of positrons per laser shot as a function of $1 / \mathrm{Y}_{\gamma}$. The circles are the 46.6 GeV data whereas the squares are the 49.1 GeV data. The solid line is a fit to the data.

History: E144 @ SLAC

- Measured non-linear Compton scattering with $n=4$ photons absorbed and pair production (with $n=5$)
- Observed the strong rise $\sim \xi^{2 n}$ but not asymptotic limit (still perturbative)
- Measurement well described by theory
- Large uncertainty on the laser intensity
- Did not achieve the critical field - the peak E-field of the laser: $0.5 \times 10^{18} \mathrm{~V} / \mathrm{m}$

Mass shift

- Electron motion in a circularly polarised field, ϵ_{L}, with frequency ω_{L} :
- Force: $F_{\perp}=e \epsilon_{L}=m_{e} a=m_{e} v^{2} / R \Longrightarrow R=m_{e} v^{2} / e \epsilon_{L}$
- Velocity: $v=\omega_{L} R=\omega_{L} m_{e} v^{2} / e \epsilon_{L} \Longrightarrow v=e \epsilon_{L} / \omega_{L} m_{e}=\xi$
- Momentum: $p_{\perp}=m_{e} v=m_{e} \xi$
- Energy: $E=\dot{m}_{e}^{2}+\vec{p}^{2}=m_{e}^{2}+p_{\perp}^{2}+p_{\|}^{2}=m_{e}^{2}\left(1+\xi^{2}\right)+p_{\|}^{2}=\bar{m}_{e}^{2}+p_{\|}^{2}$
- Mass shift:

$$
m_{e} \longrightarrow \bar{m}_{e}=m_{e} \sqrt{1+\xi^{2}}
$$

- The 4-momentum of the electron inside an EM wave is altered due to continuous absorption and emission of photons
- the laser photon 4-momentum is: k_{μ}
- outside the field, the (free) charged particle 4-momentum is: p_{μ}
- inside the field, the effective 4-momentum $\left(q_{\mu}\right)$ and mass are:

$$
q_{\mu}=p_{\mu}+\frac{\xi^{2} m_{e}^{2}}{2(k \cdot p)} k_{\mu} \Rightarrow \bar{m}_{e}=\sqrt{q_{\mu} q^{\mu}}=m_{e} \sqrt{1+\xi^{2}}
$$

Mass shift \longrightarrow kinematic edge

- if n is the number of absorbed laser photons in the nonlinear Compton process, the energy-momentum conservation: $q_{\mu}+n k_{\mu}=q_{\mu}^{\prime}+k_{\mu}^{\prime}$
- The maximum value for the scattered photon energy, ω^{\prime}, corresponds to the minimum energy, or, "kinematic edge" of the scattered electron. It depends on the number of absorbed laser photons:
$\omega_{\min }^{\prime}=\frac{\omega}{1+2 n(k \cdot p) / \bar{m}_{e}^{2}}$, where $\bar{m}_{e}=m_{e} \sqrt{1+\xi^{2}}$
- This energy decreases with increasing number of photons absorbed
- The electron is effectively getting more massive with ξ and recoils less
- the min energy of the scattered electron (kinematic edge) is higher

Electric field vs Intensity

$$
\begin{aligned}
& I=\left(1-f_{\text {Losses }}\right) \times \frac{E_{\text {pulse }}}{T_{\text {pulse }} \times S_{\text {pulse }}} \rightarrow \frac{(1-60 \%) \times 9[\mathrm{~J}]}{30[\mathrm{fs}] \times\left(3 \times 3\left[\mu \mathrm{~m}^{2}\right]\right)} \\
& I=0.4 / 30\left[\mathrm{~J} / \mathrm{fs} / \mu \mathrm{m}^{2}\right] \sim 1.33 \times 10^{-2} \times 10^{15} \times 10^{8}\left[\mathrm{~J} / \mathrm{s} / \mathrm{cm}^{2}\right]
\end{aligned}
$$

$$
I=1.33 \times 10^{21}\left[\mathrm{~J} / \mathrm{s} / \mathrm{cm}^{2}\right]=1.33 \times 10^{21}\left[\mathrm{~W} / \mathrm{cm}^{2}\right]
$$

$$
\epsilon_{L}=\sqrt{\frac{I}{c n \epsilon_{0}}} \underset{n=1}{\Longrightarrow} \sim \sqrt{\frac{1.33 \times 10^{21}}{\left(2.99 \times 10^{8}\right) \times\left(8.85 \times 10^{-12}\right)}}\left[\sqrt{\frac{(\mathrm{N} \cdot \mathrm{~m} / \mathrm{s}) / \mathrm{cm}^{2}}{(\mathrm{~m} / \mathrm{s}) \times\left(\mathrm{N} / \mathrm{V}^{2}\right)}}\right] \sim 0.71 \times 10^{12}[\mathrm{~V} / \mathrm{cm}]
$$

$$
\text { Boost : } \epsilon_{L} \longrightarrow \epsilon_{L}^{\prime}=\epsilon_{L} \times\left(3.23 \times 10^{4}\right) \sim 2.3 \times 10^{16}[\mathrm{~V} / \mathrm{cm}]=1.77 \times \epsilon_{\text {Schwinger }}
$$

$$
\begin{aligned}
c & =2.99 \times 10^{8}[\mathrm{~m} / \mathrm{s}] \\
\epsilon_{0} & =8.85 \times 10^{-12}\left[\mathrm{~N} / \mathrm{V}^{2}\right] \\
{[I] } & =[\mathrm{W}]=[\mathrm{N} \cdot \mathrm{~m} / \mathrm{s}]
\end{aligned}
$$

$$
\epsilon_{\text {Schwinger }} \sim 1.3 \times 10^{16}[\mathrm{~V} / \mathrm{cm}]
$$

Laser

- Phase-I: the JETi40 40 TW laser loaned to LUXE by Helmholtz Institute Jena
- Phase-II: looking up towards a 350 TW laser with as small as $3 \times 3 \mu \mathrm{~m}^{2}$ spot size
- Challenge: exact knowledge of the intensity at the IP
- with the laser being ~ 10 's of meters away from it
- and with a remote diagnostics system

Laser diagnostics

- Measure laser parameters to infer the intensity, I
- can be indirect and direct, relative and absolute

$$
I=\frac{E}{4 \times \text { pulse energy }} \underset{\leftarrow \text { pulse spot size } \times \text { duration }}{ }
$$

- air movement, vibrations, temp-drift, pump discharge variations, etc.
- The laser beam will be attenuated and imaged on the return path to the diagnostics 10s of meters away from the IP

Diagnostics

- relative intensity
- pulse duration
- beam size

Synchronisation \& Trigger

Synchronisation of the XFEL:

- Optical clock (master laser oscillator, MLO) provides stable pulsed optical reference (Phase-locked to radio frequency (RF) oscillator (MO))
- Optical reference distributed via length-stabilised optical fibre links for laser locking and RF re-sync

LUXE's laser oscillator:

- connected to the optical sync system, which will in turn trigger the detectors

Non-perturbativity ${ }_{x}$

The parameter region LUXE will probe, compared to the asymptotic scaling of the Breit-Wheeler process at large and small ξ and χ parameters

The dependency of probability for the Breit-Wheeler process on the intensity parameter ξ for a probe photon colliding at 17.2 degrees with otherwise standard laser pulse parameters. The blue dashed lines indicate multi-photon scaling and the plot markers are the analytical QED planewave results for a photon energy of 16.5 GeV

LUXE Planning

		2021				2022				2023				2024				2025				2026				2027				2028				2029			
		Q1	Q2	Q2	Q4	Q1	Q2	Q3	Q4																												
Beamline	Finalize design																																				
	Prepare installation																																				
	Infrastructure installation																																				
	Beamline installation																																				
	Commission beamline																																				
Laser	Clean room installation																																				
	Finalize design																																				
	install diagnostics																																				
	JETI 40 installation																																				
	JETI40 \& diag. commission																																				
	350 TW laser installation																																				
	350 TW laser commission																																				
Detectors	Finalize design \& prototyping																																				
	Construction \& indiv. testing																																				
	Combined testing																																				
	Install \& commission																																				
	upgrades installation (tbc)																																				
Commission																																					
Data taking	phase-0 e-laser $/ \gamma$-laser																																				
	phase-l e-laser $/ \gamma$-laser																																				

- CDR released in Feb 2021 \& passed an international review. Now working toward TDR for 2022
- Experiment must be installed by 2024 during the long shutdown of the Eu.XFEL
- Phase-0: data taking in 2024 with the 40 TW laser in e-laser mode and move to γ-laser in 2025
- Phase-1: upgrade laser to 350 TW in 2026 and run until the Eu.XFEL needs the tunnel (~ 2029)

New Physics at LUXE

- Focus on axion-like particles (ALP) search - in many motivated extensions of the SM - addresses the strong CP \& the hierarchy problems, valid dark matter candidate,...
- everything will apply also to scalars with $a \rightarrow \phi, \tilde{F}_{\mu \nu} \rightarrow F_{\mu \nu}, i \gamma^{5} \rightarrow 1$
- Focusing on the Primakoff production with a displaced decay to 2 hard photons
- See backup for ALP production discussion

New Physics@ Optical Dump

$$
N_{a} \approx \mathscr{L}_{\mathrm{eff}} \int d E_{\gamma} \frac{d N_{\gamma}}{d E_{\gamma}} \sigma_{a}\left(E_{\gamma}, Z\right)\left(e^{-\frac{L_{D}}{L_{a}}}-e^{-\frac{L_{V}+L_{D}}{L_{a}}}\right) \mathscr{A}
$$

Photon spectra for ALPs production

- Showing spectra per primary electron
- "primary" from the IP and
- "secondary" from the shower in the dump
- "Many" photons per electron (phase-1): ~ 3.5 for $\left(E_{\gamma}>0 \mathrm{GeV}\right)$
~ 1.7 for $\left(E_{\gamma}>1 \mathrm{GeV}\right)$
- Not shown: spectra for the electrons-ondump case. One expects a factor of ~ 2 more photons - more signal!, what about bkg?

ALPs production

$$
N_{a} \approx \mathscr{L}_{\mathrm{eff}} \int d E_{\gamma} \frac{d N_{\gamma}}{d E_{\gamma}} \sigma_{a}\left(E_{\gamma}, Z\right)\left(e^{-\frac{L_{D}}{L_{a}}}-e^{-\frac{L_{V}+L_{D}}{L_{a}}}\right) \mathscr{A} \quad \mathscr{L}_{\mathrm{eff}}=N_{e^{\prime}} N_{\mathrm{BX}} \frac{9 \rho_{W} X_{0}}{7 A_{W} m_{0}} \quad L_{a}=c \tau_{a} \frac{p_{a}}{m_{a}}
$$

- $N_{e}=1.5 \times 10^{9}$ is the number of electron per bunch and $N_{\mathrm{BX}}\left(=10^{7}\right)$ is the number of BXs assumed
- E_{γ} is the incoming photon energy
- $\mathscr{L}_{\text {eff }}$ is the effective luminosity, where ρ_{W} is the Tungsten density, A_{W} is its mass number and X_{0} is its radiation length. $m_{0} \sim 930 \mathrm{MeV}$ is the nucleon mass
- L_{a} is the ALP propagation length, where τ_{a} is its proper lifetime and p_{a} is its momentum
- $\sigma_{a}\left(E_{\gamma}, Z\right)$ is the Primakoff production cross section of the ALP in the dump
- \mathscr{A} is the angular acceptance times efficiency of the detector
- $d N_{\gamma} / d E_{\gamma}$ is the differential photon flux per initial electron, includes photons from the electron-laser interaction, as well as secondary photons produced in the EM shower which develops in the dump
- $L_{D}=1 \mathrm{~m}$ is the dump's length. The dump is positioned $\sim 13 \mathrm{~m}$ away from the electron-laser interaction region
- $L_{V}=2.5 \mathrm{~m}$ is the length of the decay volume
- The decay rate of the ALP into two photons is $\Gamma_{a \rightarrow \gamma \gamma}=m_{a}^{3} /\left(64 \pi \Lambda_{a}^{2}\right)$

Scalar and Naturalness

- The $\phi-\gamma$ coupling induces quadratically divergent, additive contribution to the scalar mass-square, $\delta m_{\phi}^{2} \sim \Lambda_{\mathrm{UV}}^{4} /\left(16 \pi^{2} \Gamma_{\phi}^{2}\right)$
- Λ_{UV} is the scale in which NP is required to appear in order to cancel the quadratic divergences
- This leads to a naturalness bound:

$$
\Gamma_{\phi} \gtrsim 4 \times 10^{5} \mathrm{GeV}\left(\frac{\Lambda_{\mathrm{UV}}}{\mathrm{TeV}}\right)^{2} \frac{200 \mathrm{MeV}}{m_{\phi}}
$$

- LUXE-NPOD is expected to reach the sensitivity required to probe the edge of the parameter space of natural models in its phase-1

Signal MC prod. with MadGraph

- Generate this process: a nuc -> ax nuc where a is photon, nuc is the nucleus of the tungsten dump and ax is the ALP (Primakoff production)
- The nuclear form factor was obtained from Iftah Galon and implemented in the model
- MadGraph does not smear the vertex position, so all collisions happen at $\mathrm{z}=0, \mathrm{t}=0$
- Moreover MadGraph decays the ALP instantaneously
- The 2 photons are produced at $\mathrm{z}=0$ and hence we need to
 displace them according to the ALP's lifetime

Signal MC prod. with MadGraph

- The distance of decay $\left(r_{\mathrm{vtx}}\right)$ for each ALP is obtained by randomly drawing a length from the decay length distribution of the ALP, where:
- the decay length is $L_{a}=c \tau_{a} p_{a} / m_{a}$
- the direction is determined by the momentum of ALP
- r_{vtx} is randomly drawn number from $e^{-L_{a}}$
- Once \vec{r}_{vtx} is obtained, the two photons are shifted to that position
- if $L_{D}<r_{\mathrm{vtx}} \cos \theta_{a}<L_{D}+L_{V}$ we proceed to next stage, otherwise the event is rejected
- given the opening angle of the photons and the distance they still need to travel to detector, we check if the photons impinge the detector or not.
- if both photons impinge the detector and $E_{\gamma}>0.5 \mathrm{GeV}$, then that event is accepted
- The acceptance \mathscr{A} is the number of events with both photons passing the energy cut and geometric constraints divided by the total number of events generated
- Once the geometric acceptance is obtained, the factor is multiplied by the effective luminosity and the cross-section of production to get the number of ALP events (see earlier slide) where $N_{a}=\mathscr{L}_{\text {eff }} \sum_{i} \sigma_{i} \mathscr{A}_{i} N_{\gamma, i}$ and where the sum is over sum over the incoming photon beam energy distribution $N_{\gamma, i}$

Event 1: Rejected

Signal MC prod. with MadGraph

More than 90% of the photons are captured by a detector with radius of 1 m

Signal MC prod. with MadGraph

Signal MC with MadGraph

Time scales@ LUXE-NPOD

- The relevant time scale of LUXE's 800 nm laser itself is $\omega_{L}^{-1} \sim 0.4 \mathrm{fs}$
- The laser pulse duration is $t_{L} \sim \mathcal{O}(10-200)$ fs
- The (Compton scattering) photon production timescale is $\tau_{\gamma} \sim \mathcal{O}(10)$ fs
- The (Breit-Wheeler) pair production timescale is $\tau_{e e} \sim \mathcal{O}\left(10^{4}-10^{6}\right) \mathrm{fs}$
- Therefore: $\omega_{L}^{-1} \ll \tau_{\gamma} \ll t_{L} \ll \tau_{e e}$

Why not electrons-on dump?

XFEL electrons on dump (not to scale)

Particles from e / γ-beam on 1m W dump

Each simulation in the following is equivalent to about 2 BXs (i.e. 3 e 9 primary e's)
Showing the number of particles - only those which arrive at the detector surface

Probability to get 2 real photons

$P_{m_{\gamma}}=\frac{\lambda_{\gamma}^{m_{\gamma}} e^{-\lambda_{\gamma}}}{m_{\gamma}!}$

- $\lambda_{\gamma}=0.013 \pm 0.004$ since the fit gives $R_{\gamma / n}=0.0013 \pm 0.0002$ and
since $N_{n} \simeq 10$, with $\lambda_{\gamma}=N_{n} R_{\gamma / n}\left(1 \pm \sqrt{\frac{1}{N_{n}}+\frac{\Delta^{2} R_{\gamma / n}}{R_{\gamma / n}}}\right)$
(or in the e-on-dump case: $\lambda_{\gamma} \simeq 0.26 \pm 0.04$ for $R_{\gamma / n} \simeq 0.0062 \pm 0.0002$ and $\left.N_{n} \simeq 42.6\right)$
${ }_{2 \gamma}=\frac{\lambda_{\gamma}^{2} e^{-\lambda_{\gamma}}}{2!} \simeq 8.34 \times 10^{-5}\left(\right.$ or in the e-on-dump case: $\left.2.7 \times 10^{-2}\right)$

Probability to get 2 fake photons

- $P_{n \rightarrow \gamma}=f_{n \rightarrow \gamma}$
- $\lambda_{n}=\lambda_{n}(1 \mathrm{~m})=10$ (or in the e-on-dump case: $\lambda_{n} \simeq 42.6$)
- $P_{2 n \rightarrow 2 \gamma}=\sum_{m_{n}=2}^{\infty} \frac{\lambda_{n}^{m_{n}} e^{-\lambda_{n}}}{m_{n}!} C\left(2, m_{n}, P_{n \rightarrow \gamma}\right)$
- $P_{2 n \rightarrow 2 \gamma}=\sum_{m_{n}=2}^{\infty}\left(\frac{\lambda_{n}^{m_{n}} e^{-\lambda_{n}}}{m_{n}!}\right)\left(\frac{m_{n}!}{2!\left(m_{n}-2\right)!} P_{n \rightarrow \gamma}^{2} \times\left(1-P_{n \rightarrow \gamma}\right)^{m_{n}-2}\right)=\sum_{m_{n}=2}^{\infty} \frac{\lambda_{n}^{m_{n}} e^{-\lambda_{n}} \times P_{n \rightarrow \gamma}^{2} \times\left(1-P_{n \rightarrow \gamma}\right)^{m_{n}-2}}{2!\left(m_{n}-2\right)!}$
- $P_{2 n \rightarrow 2 \gamma}=\frac{P_{n \rightarrow \gamma}^{2} e^{-\lambda_{n}} \lambda_{n}^{2}}{2}\left(1+\lambda_{n}\left(1-P_{n \rightarrow \gamma}\right)+\frac{\lambda_{n}^{2}\left(1-P_{n \rightarrow \gamma}\right)^{2}}{2!}+\ldots\right)=\frac{P_{n \rightarrow \gamma}^{2} e^{-\lambda_{n}} \lambda_{n}^{2}}{2}\left(\sum_{k=0}^{\infty} \frac{\left(\lambda_{n}\left(1-P_{n \rightarrow \gamma}\right)\right)^{k}}{k!}\right)=\frac{P_{n \rightarrow \gamma}^{2} e^{-\lambda_{n}} \lambda_{n}^{2}}{2} \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$
- $P_{2 n \rightarrow 2 \gamma}=\frac{P_{n \rightarrow \gamma}^{2} \lambda_{n}^{2} e^{-\lambda_{n}} e^{\lambda_{n}\left(1-P_{n \rightarrow \gamma}\right)}}{2}=P_{n \rightarrow \gamma}^{2} e^{-\lambda_{n} P_{n \rightarrow \gamma}} \frac{\lambda_{n}^{2}}{2}=50 f_{n \rightarrow \gamma}^{2} e^{-10 f_{n \rightarrow \gamma}} \quad$ (or in the e-on-dump case: $\left.\frac{42.6^{2}}{2} f_{n \rightarrow \gamma}^{2} e^{-42.6 f_{n \rightarrow \gamma}}\right)$

Probability to get 1 real + 1 fake photons

- For photons: $\lambda_{\gamma}=0.013 \pm 0.004, P_{m_{\gamma}}=\frac{\lambda_{\gamma}^{m_{\gamma}} e^{-\lambda_{\gamma}}}{m_{\gamma}!} \Rightarrow P_{1 \gamma}=\lambda_{\gamma} e^{-\lambda_{\gamma}}$
. For neutrons: $P_{n \rightarrow \gamma}=f_{n \rightarrow \gamma}, \quad \lambda_{n}=10 \pm 2.3, \quad P_{1 n \rightarrow 1 \gamma}=\sum_{m_{n}=1}^{\infty} \frac{\lambda_{n}^{m_{n}} e^{-\lambda_{n}}}{m_{n}!} C\left(1, m_{n}, P_{n \rightarrow \gamma}\right)$

$$
\begin{aligned}
& P_{1 n \rightarrow 1 \gamma}=\sum_{m_{n}=1}^{\infty}\left(\frac{\lambda_{n}^{m_{n}} e^{-\lambda_{n}}}{m_{n}!}\right)\left(\frac{m_{n}!}{1!\left(m_{n}-1\right)!} P_{n \rightarrow \gamma} \times\left(1-P_{n \rightarrow \gamma}\right)^{m_{n}-1}\right)=\sum_{m_{n}=1}^{\infty} \frac{\lambda_{n}^{m_{n}} e^{-\lambda_{n}} \times P_{n \rightarrow \gamma} \times\left(1-P_{n \rightarrow \gamma}\right)^{m_{n}-1}}{\left(m_{n}-1\right)!} \\
& P_{1 n \rightarrow 1 \gamma}=P_{n \rightarrow \gamma} e^{-\lambda_{n} \lambda_{n}}\left(1+\lambda_{n}\left(1-P_{n \rightarrow \gamma}\right)+\frac{\lambda_{n}^{2}\left(1-P_{n \rightarrow \gamma}\right)^{2}}{2!}+\ldots\right)=P_{n \rightarrow \gamma} e^{-\lambda_{n} \lambda_{n}}\left(\sum_{k=0}^{\infty} \frac{\left(\lambda_{n}\left(1-P_{n \rightarrow \gamma}\right)\right)^{k}}{k!}\right)=P_{n \rightarrow \gamma} e^{-\lambda_{n} \lambda_{n}} \sum_{k=0}^{\infty} \frac{x^{k}}{k!}
\end{aligned}
$$

$$
P_{1 n \rightarrow 1 \gamma}=P_{n \rightarrow \gamma} \lambda_{n} e^{-\lambda_{n}} e^{\lambda_{n}\left(1-P_{n \rightarrow \gamma}\right)}=P_{n \rightarrow \gamma} e^{-\lambda_{n} P_{n \rightarrow r} \lambda_{n}}
$$

- For one neutron and one photon: $P_{n+\gamma \rightarrow 2 \gamma}=P_{1 n \rightarrow 1 \gamma} \cdot P_{1 \gamma}=\left(\lambda_{n} f_{n \rightarrow \gamma} e^{-\lambda_{n} f_{n \rightarrow \gamma}}\right) \cdot\left(\lambda_{\gamma} e^{-\lambda_{\gamma}}\right) \simeq 0.128 f_{n \rightarrow \gamma} e^{-10 f_{n \rightarrow \gamma}}$ (or in the e-on-dump case: $1.12 f_{n \rightarrow \gamma} e^{-42.6 f_{n \rightarrow r}}$)

Displacement in x at the detector face

Magnet requirements
Circle equation wrt the origin at the centre of the circle defined by the track: $X^{2}+Z^{2}=R^{2}$ Therefore: $Z_{\text {exit }}=L_{B}$ and hence $X_{\text {exit }}=\sqrt{R^{2}-L_{B}^{2}}$

The tangent equation is: $Z=m_{\mathrm{T}} \cdot X+c_{\mathrm{T}}$. The tangent gradient, m, is -1 over the gradient of the radius line itself, at the point where the tangent is defined at the point $\left(Z_{\text {exit }}, X_{\text {exit }}\right)$, i.e.:

$$
m_{\mathrm{T}}=-1 / m_{\mathrm{R}}=-1 /(\Delta Z / \Delta X)_{\text {radius slope }}=-\frac{\left(X_{\text {exit }}-0\right)}{\left(Z_{\text {exit }}-0\right)}=-\frac{\sqrt{R^{2}-L_{B}^{2}}}{L_{B}}=-\sqrt{\frac{R^{2}}{L_{B}^{2}}-1}
$$

Using the point $\left(Z_{\text {exit }}, X_{\text {exit }}\right)$ again we get the intersection of the tangent: $c_{\mathrm{T}}=Z-m_{\mathrm{T}} \cdot X$

$$
c_{\mathrm{T}}=L_{B}-\left(-\sqrt{\frac{R^{2}}{L_{B}^{2}}-1}\right) \cdot \sqrt{R^{2}-L_{B}^{2}}=L_{B}+\frac{R^{2}-L_{B}^{2}}{L_{B}}=\frac{R^{2}}{L_{B}}
$$

Hence, the prediction along the tangent at some point $Z_{\text {tangent }}$ is: $X=\frac{Z-c_{\mathrm{T}}}{m_{\mathrm{T}}}$

$$
\begin{aligned}
& X_{\text {tangent }}=\left(\frac{R^{2}}{L_{B}}-Z_{\text {tangent }}\right) \frac{L_{B}}{\sqrt{R^{2}-L_{B}^{2}}} \text { and so putting } Z_{\text {tangent }}=Z_{\text {det }}=L_{D}-L_{0} \simeq L_{D} \\
& \text { we get that } X_{\text {tangent }} \simeq\left(\frac{(p / 0.3 B)^{2}}{L_{B}}-L_{D}\right) \frac{L_{B}}{\sqrt{(p / 0.3 B)^{2}-L_{B}^{2}}}
\end{aligned}
$$

Background estimation

- Background is mostly neutrons and photons
- we get $\underline{0}$ photons and 10 neutrons per BX for 2 BXs simulated
- This is inaccurate: need many more BXs for a proper estimate
- however, the simulation is very intensive computationally
- Instead, we see that the photon production is correlated with the neutrons production (in hadronic processes)
- $\quad N_{\gamma}$ can be extrapolated from the photons-to-neutrons ratio of shorter L_{D} dumps than the nominal, where we have enough photons:

$$
N_{\gamma}\left(L_{D}^{\text {nom }}\right) \simeq N_{n}\left(L_{D}^{\text {nom }}\right) \times R_{\gamma / n}\left(L_{D}<L_{D}^{\text {nom }}\right)
$$

Background estimation

- Assuming
- one year of running with $T \sim 10^{7}$ live seconds, i.e. recorded BXs

Assumptions	Value
$\mathbf{T}_{\text {op }}$	$1 \mathrm{E}+07$
$\mathbf{R}_{\text {sel }}$	$5 \mathrm{E}-04$
$\mathbf{f}_{\mathbf{n} \rightarrow \gamma}$	$5 \mathrm{E}-04$

- rejection is $R_{\text {sel }} \lesssim 10^{-3}-10^{-4}$ from kinematics \& timing
- neutron-to-photon fake rate is $f_{n \rightarrow \gamma} \lesssim 10^{-3}-10^{-4}$
- Number of bkg two-photon events is $\boldsymbol{N}_{\mathrm{bkg}}=\boldsymbol{P}_{\mathrm{bkg}} \boldsymbol{R}_{\text {sel }} \boldsymbol{T}_{\text {operation }}$

Parameter	LUXE NPOD	Electrons on dump
$\mathbf{R}_{\mathbf{Y} / \mathrm{n}}$ (fit)	0.0013	0.0062
$\boldsymbol{\mu}_{\mathrm{n}}$ (count)	9.8	42.6
$\boldsymbol{\mu}_{\mathrm{Y}}$ (extrap.)	0.013	0.264

- bkg $=2 \gamma$
- bkg $=2 n \rightarrow 2 \gamma$ (sub-dominant)
- bkg $=\gamma+n \rightarrow 2 \gamma$
- The probabilities are given by Poisson and Binomial laws:

$$
P_{N_{\gamma}}=\frac{\mu_{\gamma}^{N_{\gamma}} e^{-\mu_{\gamma}}}{N_{\gamma}!} \quad P_{N_{n} \rightarrow N_{\gamma}}=\sum_{k_{n}=N_{n}}^{\infty} \frac{\mu_{n}^{k_{n}} e^{-\mu_{n}}}{k_{n}!} \mathrm{B}\left(N_{n}, k_{n}, f_{n \rightarrow \gamma}\right) \quad P_{n+\gamma \rightarrow 2 \gamma}=P_{1 n \rightarrow 1 \gamma} \cdot P_{2 \gamma}
$$

Max $\mathbf{N}_{\mathbf{b k g}}$	LUXE NPOD	Electrons on dump
$\mathbf{N}_{\mathbf{2 Y}}$	0.4	133.9
$\mathbf{N}_{\mathbf{2 n} \rightarrow \mathbf{2 Y}}$	0.1	1.1
$\mathbf{N}_{\mathbf{Y} \mathbf{+ \mathbf { n } \rightarrow \mathbf { 2 Y }}}$	0.3	21.1
$\mathbf{N}_{\text {bkg }}^{\text {tot }}<\mathbf{1}$		

Fake photons from neutrons
 $\gamma 0.5 \mathrm{GeV}$, neutron 1 GeV

- Most neutrons are very soft
- Very different shower shapes (γ vs n) - harder neutrons are more similar
- Study done by Sasha Borysov (Staff scientist candidate at the faculty)

1 GeV neutron

Sampling calorimeter

 Calorimeter

Exploiting timing information

- The time it takes a bkg photon to fly from z_{0} at t_{0} to the detector face at $z_{1}=z_{D}+L_{D} / 2+L_{V}=3.65 \mathrm{~m}$, is $t_{1}=t_{0}+(12+\Delta t) \mathrm{ns}$ - for $z_{0}=0, t_{0}=0, z_{D}=1 \mathrm{~m}, L_{D}=0.3 \mathrm{~m}$ and $L_{V}=2.5 \mathrm{~m}$
- We trigger at t_{0} (Eu.XFEL clock) and open a short time window Δt
- most signal (and bkg) photons will arrive within $\Delta t \simeq 0.5 \mathrm{~ns}$
- almost all bkg hadrons will arrive after that - need $\lesssim \mathbf{0 . 1} \mathbf{~ n s ~ r e s o l u t i o n ~}$

	Background rejection $\sim \mathbf{\%}$				Signal efficiency [\%] for $\boldsymbol{m}_{\mathbf{a}}: \mathbf{1} / \boldsymbol{\Lambda}_{\mathbf{a}}$		
$\boldsymbol{\Delta t}[\mathbf{n s}]$	$\boldsymbol{\gamma}$	\boldsymbol{n}	\boldsymbol{p}	$\boldsymbol{K}_{\mathbf{L}}$	$\mathbf{1 3 0 : 1 e - 4}$	$\mathbf{2 0 0}: \mathbf{e - 5}$	$\mathbf{4 1 6 : e - 5}$
$\mathbf{0 . 1}$	57	99.9	99.9	87	99.6	84	46
$\mathbf{0 . 5}$	16	96	94	52	100	100	99
$\mathbf{1 . 0}$	0	80	70	13	100	100	100

Contours of the expected number of $a, \phi \rightarrow 2 \gamma$ events, $N_{a, \phi}$, for phase- 0 and phase-1

The lines correspond to 1 year of data taking.
The nominal curve is for $N_{a, \phi}=3$ which is the 95% CL equivalent for background free search

Sep 152021

New Physics production at the IP

- Axion-like particles (ALPs)
- or scalars $(X=a, \phi)$
- Milli-charged particles (mCPs) - $m_{\psi} \ll m_{e}$ and $q_{\psi} \equiv q e \ll e$

LUXE-NPOD

Setting the number of observed signal-like events to $N_{a}=3$, which is the 95% CL equivalent for background free search

LUXE-NPOD: new physics searches with an optical dump at LUXE

$$
{ }^{1} \text { Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China }
$$

${ }^{\gamma}$ Physics

We propose a novel way to search for feebly interacting massive particles, exploiting two properties
f systems involving collisions between high energy electrons and intense laser pulses. The first of systems involving colisions between high energy electrons and intense laser pulses. The first
property is that the electron-intense-laser collision results in a large flux of hard photons, as the laser behaves effectively as a thick medium. The second property is that the emitted photons free-stream inside the laser and thus for them the laser behaves effectively as a very thin medium.
Combining these two features implies that the electron-intense-laser collision is an apparatus which Combining these two features implies that the electron-intense-laser colision is an apparatus which
can efficiently convert UV electrons to a large flux of hard, co-linear photons. We further propose to direct this unique large and hard flux of photons onto a physical dump which in turn is capable of producing feebly interacting massive particles, in a region of parameters that has never been probed before. We denote this novel apparatus as "optical dump" or NPOD (new physics search with
optical dump). The proposed LUXE experiment at Eu. XFEL has all the required basic ingredients optical dump). The proposed LUXE experiment at Eu.XFEL has all the required dasic ingredients
of the above experimental concept. We discuss how this concept can be realized in practice by adding a detector after the last physical dump of the experiment to reconstruct the two-photon decay product of a new spin- 0 particle. We show that even with a relatively short dump, the search
can still be background free. Remarkably, even with a 40 TW laser, which corresponds to the initial can still be backeround rree. Remarkaby, even with a 40 TW laser, which corresponds th the initial
run, and definitely with a 350 TW laser, of the main run with one year of data taking, LUXE-NPOD winl be able to probe uncharted territiory of bothm models of pseudo--scalar and scalar fields, and in
particular probe natural of scalar theories for masses above 100 MeV .

\section*{Profiler - why Sapphire $\mathbf{A l}_{2} \mathbf{O}_{3}$?
 | Material properties | sapphire | diamond | silicon |
| :--- | :---: | :---: | :---: |
| density [g/cm3] | 3.98 | 3.52 | 2.33 |
| bandgap [eV] | 9.9 | 5.47 | 1.12 |
| energy to create an eh pair [eV] | 27 | 13 | 3.6 |
| dielectric constant | $9.3-11.5$ | 5.7 | 11.7 |
| dielectric strength [V/cm] | $4.0 \mathrm{E}+05$ | $1.0 \mathrm{E}+06$ | $3.0 \mathrm{E}+05$ |
| resistivity [Ohm cm] at 20 C | $1.0 \mathrm{E}+16$ | $1.0 \mathrm{E}+16$ | $1.0 \mathrm{E}+05$ |
| electron mobility [cm2/(V s)] at 20 C | 600 | 2800 | 460 |
| MIP eh created [eh/ $\mu \mathrm{m}$] | 22 | 36 | 73 |

 Usignal $50.0 \mathrm{Km}, 500 \mathrm{pC}$. 20 dB
 }

- High radiation resistance: ~ 10 MGy
- Leakage current does not increase with dose
- High e-h creation energy
- Low collection efficiency ($\sim 10 \%$)
- Fast response
- low electron mobility compensated by reduced distance travelled by electrons
- Low Cost: $1 € / \mathrm{cm}^{2}$ (compared to diamond $3000 € / \mathrm{cm}^{2}$)
- Intensively tested as beam halo and beam loss monitors at CMS (LHC)
S. Schuwalow et al.: Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II / JINST 10 P08008

[^0]: $a=$ numeric const.

