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Outline
๏ Introduction (but mostly see Beate’s talk!)


๏ Measurements & Challenges


๏ Technologies

https://indico.tpi.uni-jena.de/event/194/contributions/358/
https://link.springer.com/article/10.1140/epjs/s11734-021-00249-z
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Large boost 
γ = E/me

Field is larger 
by  in the 

rest frame
E/me

Large 
E-field

Electron beam

Laser pulse
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LUXE physics in a nutshell
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coupling between
charge and
radiation field, ↵

electron

coupling between
charge and
background field, a0 = ξ

๏ Nonlinear Compton scat. ⟶ Nonlinear Breit-Wheeler pair prod.

๏ Characterised by two dimensionless parameters:


๏ Laser intensity   and  Quantum parameter 


๏ Non-perturbativity: 


๏ Fermions inside the 
pulse are Volkov states:

ξ ∝ ϵ
ϵS

χ ∝ E
me

ξ

ξ ≥ 1
χ

≫ 1

https://www.worldscientific.com/doi/pdf/10.1142/S0217751X18300119
https://arxiv.org/abs/1807.10670
https://arxiv.org/abs/2107.02161
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SFQED Signals:

Compton e & γ

ΓeC

16.5 GeV electron-beam⟶



(conversions)

ΓγC

eC γC → e+e−
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SFQED Signals:

BW e+( e−)

Γe+e−

0

span  orders of 
magnitude in 

> 8
e+/BX

1

Ee+

e+
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Bkg rates at the detector faces
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๏ Full GEANT4 simulation

๏ beam only (no collisions)

๏ heavily mitigated with 

shielding already

๏ largest source: where the 

e-beam exits the vacuum


๏ Not all particles will register 
an electronic response


๏ most very low energetic


๏ Still, detectors job is to:

๏ massively reject bkgs

๏ resolve huge signals
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Bkg: 

Sig: 

∼ 103 − 104 [e−, γ/BX]
∼ 10−2 − 106 [e+/BX]

IP  
detectors

e+

Bkg rates at the detector faces
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Bkg rates at the detector faces
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Bkg rates at the detector faces

Forward 
detectors

Bkg: 

Sig:  

∼ 101 − 106 [γ, e−/BX]
∼ 104 − 108 [γ, e−/BX]
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IP detectors - current design

Electrons Tracker

(down in e+laser mode)

Screen

Cherenkov

Positrons Tracker

CalorimeterVacuum chamber

(inside dipole volume)

Vacuum chamber

(outside dipole volume)

Electron beam

exits the vacuum here

from IP

γC beam-pipe
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Pixel tracker
LUXE tracker has 8 staves

in each arm of the tracker

ALPIDE: Monolithic Active Pixel Sensor

512x1024 pixels of 27x29 µm2 in a 3x1.5 cm2 chip


(by TowerJazz+ALICE at CERN)“Stave” has 9 chips

(by ALICE at CERN)
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Efficiency is ~99%

for E ≳ 2.5 GeV

Energy res.

~1%

Linearity for

different trk

multiplicities

Fired pixels are clustered and tracks are fitted to extract the 
momentum of the particle using the  knowledgeB − field

๏ Sig cluster ๏ Bkg cluster
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High-granularity compact calorimeter 
20 layers of 3.5 mm thick tungsten plates 
and sensors in 1 mm gaps between plates

Silicon sensor with pad size of 5×5 mm2 
and an assembly thickness of <700 µm

 fit
σ(E)

E

Shower has as small RMoliére

Design follows the ILC’s FCAL 
lines but could also converge on 
the CALICE technology

~few GeV electron
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Scintillating screen & camera
๏ Terbium-doped Gadolinium Oxysulfide


๏ high output photon # above the 
ambient background light


๏ One 2k-pixel camera: position res. is 
<500 µm (better with more cameras)


๏ Light/charge calibration from measured 
light curve from testbeam

500 µm GadOx: particles depositing energy induce an isotropic 
and ~monochromatic (~545nm) fluorescent photons emission

scintillating photons emitted 
per BX vs the x position


(x=0 is centre of the screen) 

๏ Energy determined from 
the position along the 
screen and the B-field


๏ Linear response up to 350 
pC (high fluxes!) 
demonstrated by AWAKE

Reconstructed

energy vs truth

Reconstructed vertical 
coordinate (sig vs bkg)

From GEANT4
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Cherenkov counter

๏ More agnostic to low-
energy (non-signal) 
particles than the screen


๏ We don’t yet have results 
for the new TRT concept


๏ CDR design relied on 
polarimetry detector for 
future lepton colliders

TRT straws

staggering

Screen

Cherenkov

Si
PM

 p
cb

300 um entrance window 
(same in the exit)

Al, gas-tight

shielded box

ATLAS spare TRT straws, segmented in a few rows, openly coupled to 
SiPMs on the top (gas flow) and to fibres for calibration at the bottom

beampipe

Calibration

light box
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Forward photon spectrometer
๏ Same GadOx screen (both sides now!)


๏ CDR: particles travelling in air (now in vacuum)

๏ much more background earlier

๏ signal photons were also converted in air


๏ Possibly measure  to extract info 
about the beam shape

dN/dE(x)/dy

Simulated scintillation output at the 
electron side including both sig+bkg

FWD Screens

S/B ≳ 10 − 100 Nobs
e vs N tru

γ

Energies

(e--side)

e−

γ

e+

conversions:

γC → e+e−

To be de-convoluted
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Photon beam profiler
๏ Measure the beam  and  to extract  value at 

the IP and measure  rate


๏ Typical emission angle in the lab frame is 

๏ LUXE:  so, ~310 µm after 10 m


๏ For  there are two relevant angles wrt the 
polarisation direction:  in the and 

σT σ∥ ξ
γC

θ ∼ 1/γ
θ ∼ 0.031 mrad

ξ ≫ 1
θ∥ ∼ ξ/γ θ⊥ ∼ 1/γ

Two orthogonal 2x2 cm2 and 100 µm thick Sapphire strip 
planes (huge dose!) with 100 µm pitch and an analog RO

σ(x) < 5 μm

this binning does not reflect the profiler segmentation
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New Physics @ Optical Dump
a, ϕ

e−

γL

γ γ
γ

ALPs

Production

M
uo

n 
de

t.

EMCalMagnetPhotons

Dump

e-laser int. 

chamber LD = 1 m LV = 2.5 m

ℒa =
a

4Λa
FμνF̃μν + igaeaēγ5e

ignore today

�⇤

� a

N N

γ
γ

Laser pulse 
“Optical Dump”

Free GeV 
photons

Beam 
electron

ω−1
L ≪ τγ ≪ tL ≪ τee

EMCal requirements:

๏ 

๏ 

๏ 


The LUXE-NPOD can be 
bkg-free and better than 
other players in the field

σt ∼ 𝓞(100 ps)
σx,y ∼ 𝓞(100 μm)
σθ ∼ 𝓞(10 mrad)

 for  with  and  Nγ /Ne ∼ 1.7 Eγ > 1 GeV τpulse = 120 fs w0 = 10 μm

New!!! arXiv:2107.13554

https://arxiv.org/abs/2107.13554
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 for  with  and  Nγ /Ne ∼ 1.7 Eγ > 1 GeV τpulse = 120 fs w0 = 10 μm

New!!! arXiv:2107.13554

https://arxiv.org/abs/2107.13554
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Outlook
๏ LUXE is a new exciting experiment with a novel baseline plan

๏ test QED predictions in a region of  never explored before cleanly

๏ search for new physics exploiting the optical dump concept

๏ very streamlined: take data in early ~2025


๏ The detector system provides redundancy over a huge dynamic range

๏ didn’t discuss the detailed analysis techniques (track-fitting, shower 

characterisation, edge finding, beam profiling algs, etc.)

๏ didn’t discuss the γ+laser setup (concepts are very similar)

๏ didn’t discuss the DAQ, triggering and combined operation - next time!

ξ − χ
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Tomsk, Russia

Shenzhen, China
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Backup



Noam Tal Hod, WIS Sep
tem

15 2021 29

What happens in strong fields?

numeric const.a =

non-perturbative

with ϵ ⟶ ϵS

The probability to materialise one 
virtual  pair from the vacuume+e−

ϵS =
m2

e c3

eℏ
≃ 1.32 ⋅ 1018 V

m

The Schwinger critical field (1951)

P ∼ exp (−a
ϵS

ϵ )

ϵ
V

Electric field ϵ

⟶ ∞
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History & Impact

๏ never been reached in a clean environment*

๏ test basic predictions in a novel QM regime

๏ relevant to many areas in physics

๏ potential for seeing effects of new physics!

{

1930s
1951

1990s

2020s

First discussions by Sauter, Heisenberg & Euler
First calculations by Schwinger: ϵS

E144 at SLAC first to approach ϵS

LUXE: reach  and go beyond!ϵS

The Schwinger field may be approached/reached only in 
a highly-boosted system, e.g. the one produced at LUXE

Neutron stars Hawking radiation

E-breakdown Colliders

Inflation

}
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LUXE @ the Eu.XFEL

DESY

The European XFEL

(running since 2017)

LUXE

Electrons
Ee up to 16.5 GeV, with Ne = 1.5×109 e-/bunch and a bunch charge up to 1.0 nC,

1/2700 bunches/train, ~1+9 Hz (collisions+background), spot rxy=5 µm, lz=24 µm

Laser
Ti-Sapphire, 800 nm, 40/350 TW,  up to ~10 J, ~10 Hz repetition, 60% losses


 
~30-200 fs pulse length, down to 3×3 µm2 FWHM spot with up to I~1021 W/cm2


Install and start 
operation in 2024

Laser

IPelectrons

ϵLaser → ϵLaser × Ee ∼ 10 GeV
me ∼ 0.5 MeV ∼ ϵLaser × 104

Accepted by European Physics Journal ST

Passed a detailed review process by an

international committee of experts

Got the “Critical Decision 0” (CD0)

approval from the DESY directorate

https://arxiv.org/abs/2102.02032
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๏ Outside observer: 
the BH has radiated 
a particle so the 
energy must come 
from it


๏ Looking at the 
system: the BH 
energy has 
decreased so its 
mass must decrease

The Hawking equivalent
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Why strong field physics?

๏ Reaching  is equivalent e.g. to the measurement of the anomalous magnetic 
moment or the coupling constant and deviations could be a hint for new physics


๏ Non-perturbative QFT is still being actively developed

๏ Can provide insight into the vacuum state / Higgs mechanism 

๏ Schwinger effect proposed as mechanism for reheating in the early universe

๏ New physics opportunities with strong field (ALPs, mCPs,…)

ϵS
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The Schwinger mechanism simplified
๏ Force of external static electric field is:                       

๏ Energy to separate the virtual pair in a distance d:      

๏ Energy required to materialise as a real pair:              

๏ Condition to materialise as a real pair in distance d:   

๏ Compton wavelength (typical scale):                          

๏ Probability for d: 

F = eϵ
E = F ⋅ d = eϵ ⋅ d
E = 2mec2

eϵd = 2mec2

λC = ℏ/(mec)

P ∝ exp (−
d
λC ) = exp (−2

m2
e c3

ℏeϵ ) = exp (−2
ϵS

ϵ )
ϵ

non-perturbative in e

ϵS =
m2

e c3

ℏe
≃ 1.3 ⋅ 1018 V

m
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The Furry Picture vacuum

๏ The external field “closes” this energy gap

๏ Electrons are lifted from the sea to leave the vacuum charged

๏ The VEV of the EM current must no longer vanish

๏ Separation into creation and destruction operators is problematic

๏ This point is the limit of the validity of the Furry picture

The 2nd quantisation of the 
Dirac field relies on a gap 
between the positive and 
negative energy solutions
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The Furry Picture
๏ If the external field is sufficiently strong: quantum interactions with it leave it essentially unchanged and it can be considered to be a 

classical background field

๏ Separate the gauge field to external and quantum parts: 

 and shift  to the Dirac component: 


๏ The FP Lagrangian satisfies the Euler-Lagrange equation.

๏ New equation of motion for the non-perturbative (bound) Dirac field (wrt ) and new solutions : 


๏ Exact solutions exist for a certain classes of external fields (plane waves, Coloumb fields and combinations) [Volkov Z Physik 94 250 
(1935), Bagrov & Gitman 1990]: 

 with 

ℒInt = ψ̄(i∂ − m)ψ− 1
4 F2

μν − eψ̄(Aext + A)ψ Aext ℒFP = ψ̄FP(i∂ − eAext−m)ψFP− 1
4 F2

μν − eψ̄FPAψFP

Aext ψFP (i∂ − eAext−m)ψFP = 0

ψFP = Epe−ipxup Ep = Exp [− 1
2k ⋅ p (eAextk + i2e(Aext ⋅ p) − ie2A2

ext)]

IJMP A, Vol. 33,

No. 13 (2018)

1830011
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Boiling point of QED
๏ Weak fields: many accurate predictions of observables through ordinary 

perturbative expansion in the EM coupling (𝛼EM)


๏ Strong fields: observables become inaccessible through ordinary perturbative 
expansion and there’s no experimental verification


๏ For example: the spontaneous e+e- pair production (SPP) rate per unit volume in 
strong static E-field is:

|E | But how to produce static E-field

of the order of ~1.3×1018 V/m ???

ΓSPP

V
=

m4
e

(2π)3 ( |E |
Ec )

2 ∞

∑
n=1

1
n2

e−nπ Ec
|E | ∼ e− πm2e

e |E |

non-perturbative in 𝛼

Phys. Rev. D 99, 036008 (2019)
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Lasers strong field “how-to”
๏ Laser-assisted one photon pair production, OPPP (SPP ⟶OPPP)

๏ the laser’s E-field frequency is , with momentum 

๏ the laser’s E-field strength is , with 

๏ The  pair picks up momentum from the laser photons


๏ OPPP rate is a function of the laser intensity  and the photon recoil :

ω k = (ω, k)
|ϵ | I ∼ |ϵ |2

e+e−

ξ χ

Laser intensity : ξ =
e |ϵ |
ωme

=
me

ω
|ϵ |
ϵS

Photon recoil : χγ =
k ⋅ ki

m2
e

ξ = (1 + cos θ)
ωi

me

|ϵ |
ϵS

{Dimensionless and

Lorentz-invariant

Initial photon : ki = (ωi, ki) ΓOPPP =
αm2

e

4ωi
F(ξ, χγ)
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Understanding ξ
e−

The electron’s maximum velocity is: vmax = a ⋅ Δt =
eE
me

⋅
1
ω

Electron “at rest”

The electron will oscillate with frequency  and radiate in turn: ω eE = mea

Normalise to c:    (dimensionless & Lorentz-invariant)ξ ≡
vmax

c
=

eE
ωmec

 reaches unity for e.g. a  nm laser at an intensity of  W/cm2ξ λ = 800 I ∼ 1018

Infinite E-field plane

wave with frequency ω
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Understanding χ
Recoil parameter: χ =

k ⋅ ki

m2
e

ξ = (1 + cos θ)
ωi

me

|E |
Ec

θ
cos(π − θ) = − cos θ
π-θ

ω

e/γ

Scattering geometry: k ⋅ ki = ωωi − |k | |ki |cos(π − θ) = ωωi (1 + cos θ)

χ =
k ⋅ ki

m2
e

ξ =
ωωi (1 + cos θ)

m2
e

eϵ
ωmec

= (1 + cos θ)
ωi

me

ϵ
ϵS

1
ϵS

=
e

m2
e

ℏ = c = 1
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OPPP rate: ΓOPPP ∝ F(ξ, χγ)

As the laser intensity  increases

๏ the threshold number of absorbed photons increases

๏ more terms in the summation drop out of the probability

ξ

Jn are Bessel functions
Sum on number of

absorbed laser γ’s

threshold number

of absorbed γ’s

Assumption1: the laser E-field is a circularly polarised infinite plane wave

Assumption2: we can produce a mono-energetic photon beam with ~O(10 GeV)
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Compton edges
๏ With increasing laser intensity :

๏ higher order (n) contributions 

become more prominent

๏ edge shifts to lower energies due 

to electron’s higher effective mass


๏ Cannot go much beyond  to 
produce high energy photons

ξ

ξ ∼ 1

The rate is a series of Compton edges 
for n=1,2,3,… absorbed photons and 
the edges shift down with increasing ξ

ξ=0.01 ξ=0.5
ξ=0.1 ξ=1
ξ=0.2 ξ=2

0 2 4 6 8 10 12
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Photon energy (GeV)
E
m
is
si
on
ra
te

(G
eV

-1
fs

-1
)

16.5 GeV electron, 800 nm laser, 17.2° crossing angle

ξ
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  asymptoticallyΓOPPP

๏ Unlike SPP, the  pair (in its rest frame) experiences an E-field 
enhanced by the relativistic boost factor: 


๏ However, mono-energetic photon beams with energies in the 
 range are not available…

e+e−

|ϵ | → |ϵ | × ωi/me

ωi ∼ 𝒪(10 GeV)

ΓOPPP ⟶
3
16

3
2

αme (1 + cos θ)
|ϵ |
ϵS

exp (−
8
3

1
1 + cos θ

me

ωi

ϵS

|ϵ | )
 pair is boosted and


the E-field is enhanced
e+e−

ωi ∼ 𝒪(10 GeV)



Noam Tal Hod, WIS Sep
tem

15 2021 44

High-energy photons?
๏ An  electron beam can be sent onto a high-Z target

๏ Converted into a collimated high-energy γ-beam (Bremsstrahlung)

๏ These photons are crossed with the high-intensity laser beam

๏ Laser-assisted bremsstrahlung photon pair production (BPPP)

∼ 𝒪(10 GeV)

Recall : ΓOPPP =
αm2

e

4ωi
F(ξ, χγ(ωi))

ΓBPPP =
αm2

e

4 ∫
Ee

0

dωi

ωi

dNγ

dωi
Fγ(ξ, χγ(ωi))

⏟Bremsstrahlung “PDF”

� Spectrometer

High energy

electrons

Bremsstrahlung converter

High energy photon

High intensity laser beam

e+/e� Deflection system

e+/e� Spectrometer

Ee

 is the energy of the incident electronsEe
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Asymptotically
๏ For a target of thickness , where  is the radiation length: 

 

๏ Similarly to OPPP, replacing  with , the BPPP rate is: 

X ≪ X0 X0

ωi
dNγ

dωi
≈

4
3

−
4
3 ( ωi

Ee ) + ( ωi

Ee )
2

X
X0

χγ χe

ΓBPPP ⟶
αm2

e

Ee

9
128

3
2

X
X0

χ2
e e− 8

3χe (1 − 1
15ξ2 )
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History: E144 @ SLAC

46

๏ 46.6 GeV electron beam

๏ 5×109 electrons per bunch

๏ Bunch rates up to 30 Hz

๏ Terawatt laser pulses

๏ Intensity of ~0.5×1018 W/cm2

๏ Frequency of 0.5 Hz for 

wavelengths 1053 nm, 527 nm

๏ electrons-laser crossing angle: 17º

OPPP only!

Phys.Rev. D60 (1999) 092004

!

!

!

!

!

!

!

!

!

!!

Rate ! 105s"1

quasistatic

transition to
quasistatic

nonperturbative
multiphoton

SLAC

perturbative

experiment

few"photon

1017 1018 1019 1020 1021
1
2

5
10
20

50
100
150

Laser Intensity !W"cm2#
El
ec
tr
on
En
er
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!GeV

#

LUXE



Noam Tal Hod, WIS Sep
tem

15 2021

History: E144 @ SLAC
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1/χγ =

1/14 ≤ χγ ≤ 1/6

ξ =

0.2 ≤ ξ ≤ 0.4

Phys.Rev. D60 (1999) 092004

OPPP only!



Noam Tal Hod, WIS Sep
tem

15 2021

History: E144 @ SLAC

48
Phys.Rev. D60 (1999) 092004

๏ Measured non-linear Compton scattering with  photons absorbed and 
pair production (with )


๏ Observed the strong rise  but not asymptotic limit (still perturbative)


๏ Measurement well described by theory


๏ Large uncertainty on the laser intensity


๏ Did not achieve the critical field - the peak E-field of the laser: 0.5×1018 V/m

n = 4
n = 5

∼ ξ2n
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Mass shift
๏ Electron motion in a circularly polarised field, , with frequency :


๏ Force: 

๏ Velocity: 

๏ Momentum: 

๏ Energy: 

๏ Mass shift: 



๏ The 4-momentum of the electron inside an EM wave is altered due to continuous absorption and 

emission of photons

๏ the laser photon 4-momentum is: 

๏ outside the field, the (free) charged particle 4-momentum is: 

๏ inside the field, the effective 4-momentum ( ) and mass are: 

ϵL ωL
F⊥ = eϵL = mea = mev2/R ⟹ R = mev2/eϵL

v = ωLR = ωLmev2/eϵL ⟹ v = eϵL /ωLme = ξ
p⊥ = mev = meξ

E = m2
e + ⃗p 2 = m2

e + p2
⊥ + p2

∥ = m2
e (1 + ξ2) + p2

∥ = m̄2
e + p2

∥

me ⟶ m̄e = me 1 + ξ2

kμ
pμ

qμ

qμ = pμ +
ξ2m2

e

2(k ⋅ p)
kμ ⇒ m̄e = qμqμ = me 1 + ξ2



Noam Tal Hod, WIS Sep
tem

15 2021 50

Mass shift ⟶ kinematic edge
๏ if  is the number of absorbed laser photons in the nonlinear Compton process, 

the energy-momentum conservation: 


๏ The maximum value for the scattered photon energy, , corresponds to the 
minimum energy, or, “kinematic edge” of the scattered electron. It depends on 
the number of absorbed laser photons: 

, where 


๏ This energy decreases with increasing number of photons absorbed


๏ The electron is effectively getting more massive with  and recoils less

๏ the min energy of the scattered electron (kinematic edge) is higher

n
qμ + nkμ = q′￼μ + k′￼μ

ω′￼

ω′￼min =
ω

1 + 2n(k ⋅ p)/m̄2
e

m̄e = me 1 + ξ2

ξ
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Electric field vs Intensity
I = (1 − fLosses) ×

Epulse

Tpulse × Spulse
→

(1 − 60%) × 9 [J]
30 [fs] × (3 × 3 [μm2])

I = 0.4/30 [J/fs/μm2] ∼ 1.33 × 10−2 × 1015 × 108 [J/s/cm2]

I = 1.33 × 1021 [J/s/cm2] = 1.33 × 1021 [W/cm2]

ϵL =
I

cnϵ0
⟶⏟
n=1

∼
1.33 × 1021

(2.99 × 108) × (8.85 × 10−12)
(N ⋅ m/s)/cm2

(m/s) × (N/V2)
∼ 0.71 × 1012 [V/cm]

Boost : ϵL ⟶ ϵ′￼L = ϵL × (3.23 × 104) ∼ 2.3 × 1016 [V/cm] = 1.77 × ϵSchwinger

ϵSchwinger ∼ 1.3 × 1016 [V/cm]ϵ0 = 8.85 × 10−12[N/V2]

c = 2.99 × 108[m/s]

[I] = [W] = [N ⋅ m/s]
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Dipole magnet 1
Laser pulse

Compton γ’s

e−e+

γ dump
e-laser setup 
(Not in scale)

Electron beam dump

Electron beam 
from the XFEL

IP

θ = 17
0

γ-converter

Dipole magnet 2 

Shielding

Cherenkov counter 
behind a Scint. screen

Scint. screen

Backscattering calorimeter

e−e+

Shielding

x

y
z

γ
γ

ALPs

γALPs detector (TBD)

γ-profiler

e−
C

Pixel tracker

Calorimeter

Today’s talk focusLaser

IP ALPselectrons
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๏ Phase-I: the JETi40 40 TW laser loaned 
to LUXE by Helmholtz Institute Jena


๏ Phase-II: looking up towards a 350 TW 
laser with as small as 3×3 µm2 spot size


๏ Challenge: exact knowledge of the 
intensity at the IP


๏ with the laser being ~10’s of meters 
away from it


๏ and with a remote diagnostics system

Laser

Laser room

IP
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Laser diagnostics
๏ Measure laser parameters to infer the intensity, I


๏ can be indirect and direct, relative and absolute


๏ Small fluctuations in I lead to large rate fluctuations

๏ air movement, vibrations, temp-drift, 

pump discharge variations, etc.


๏ The laser beam will be attenuated and imaged on the return 
path to the diagnostics 10s of meters away from the IP

I =
E

A × τ

pulse energy

pulse spot size × duration

10’s of meters in vacuum

Diagnostics

๏ relative intensity

๏ pulse duration

๏ beam size
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Synchronisation & Trigger

Synchronisation of the XFEL:

๏ Optical clock (master laser oscillator, MLO) provides stable pulsed optical 

reference (Phase-locked to radio frequency (RF) oscillator (MO))

๏ Optical reference distributed via length-stabilised optical fibre links for 

laser locking and RF re-sync

LUXE’s laser oscillator:

๏ connected to the optical sync system, which will in turn trigger the detectors

2.1 fs rms

Correlation of two independent

bunch arrival time diagnostics


(BAMs) at tunnel location 1932 m

world’s largest femtosecond-precision 
synchronisation system 
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Non-perturbativity

The dependency of probability for the Breit-Wheeler 
process on the intensity parameter ξ for a probe photon 
colliding at 17.2 degrees with otherwise standard laser pulse 
parameters. The blue dashed lines indicate multi-photon 
scaling and the plot markers are the analytical QED plane-
wave results for a photon energy of 16.5GeV

The parameter region LUXE will probe, compared to the 
asymptotic scaling of the Breit-Wheeler process at large and 
small ξ and χ parameters
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LUXE Planning

๏ CDR released in Feb 2021 & passed an international review. Now working toward TDR for 2022

๏ Experiment must be installed by 2024 during the long shutdown of the Eu.XFEL

๏ Phase-0: data taking in 2024 with the 40 TW laser in e-laser mode and move to γ-laser in 2025

๏ Phase-1: upgrade laser to 350 TW in 2026 and run until the Eu.XFEL needs the tunnel (~2029)



Noam Tal Hod, WIS Sep
tem

15 2021

��-� � ���

���

�

��-�� ��-�� ��-� ��-� ��-� � ���

���

�

��-�

��-�

��-�

��F

��F

58

New Physics at LUXE
๏ Focus on axion-like particles (ALP) search

๏ in many motivated extensions of the SM

๏ addresses the strong CP & the hierarchy 

problems, valid dark matter candidate,…

๏ everything will apply also to scalars with




๏ Focusing on the Primakoff production 
with a displaced decay to 2 hard photons


๏ See backup for ALP production discussion

a → ϕ, F̃μν → Fμν, iγ5 → 1

ℒa =
a

4Λa
FμνF̃μν + igaeaēγ5e

LUXE

NPOD

ignore today

�⇤

� a

N N

γ
γ

EPJC Vol 79, 74 (2019)

https://link.springer.com/article/10.1140/epjc/s10052-019-6587-9


Noam Tal Hod, WIS Sep
tem

15 2021 59

New Physics @ Optical Dump
Laser pulse 

“Optical Dump”

Free GeV 
photons

Beam 
electron

“Optical Dump”

Pulse waist size

Pu
ls

e 
du

ra
tio

n  p
er

 B
X

N
γ(E

>
1

G
eV

)/
10

9

ω−1
L ≪ τγ ≪ tL ≪ τee

Na ≈ ℒeff ∫ dEγ
dNγ

dEγ
σa(Eγ, Z)(e− LD

La − e− LV + LD
La ) 𝒜

a, ϕ
e−

γL

γ γ
γ

ALPs

Production

M
uo

n 
de

t.

EMCalMagnetPhotons

Dump

e-laser int. 

chamber LD = 1 m LV = 2.5 m

e−

γL

γ
3γ

Background

Production

γ

n

e, μ, π, K, p, . . .

K0
L
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Photon spectra for ALPs production
phase-1: all

phase-1: primary

phase-1: secondary

phase-0: all

phase-0: primary

phase-0: secondary

Bremsstrahlung

1 2 3 4 5 6 7 8 9 10 11 1210-4

10-3

10-2

10-1

1

Eγ [GeV]

dN
γ

dE
γ
[p
er
e-
/G
eV

]

๏ Showing spectra per primary electron

๏ “primary” from the IP and

๏ “secondary” from the shower in the dump


๏ “Many” photons per electron (phase-1): 
~3.5 for ( ) 
~1.7 for ( )


๏ Not shown: spectra for the electrons-on-
dump case. One expects a factor of ~2 more 
photons - more signal!, what about bkg?

Eγ > 0 GeV
Eγ > 1 GeV

phase0:

- 

- 

- 

-

τpulse = 25 fs
w0 = 6.5 μm
ξ = 2.4
Nγ/e < 1

phase1:

- 

- 

- 

-  or 1.7 if 

τpulse = 120 fs
w0 = 10 μm
ξ = 3.4
Nγ/e = 3.5 Eγ > 1 GeV
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ALPs production
Na ≈ ℒeff ∫ dEγ

dNγ

dEγ
σa(Eγ, Z)(e− LD

La − e− LV + LD
La ) 𝒜

La = cτa
pa

ma

pa ≈ E2
γ − m2

a
ℒeff = NeNBX

9ρW X0

7AWm0

๏  is the number of electron per bunch and  is the number of BXs assumed

๏  is the incoming photon energy

๏  is the effective luminosity, where  is the Tungsten density,  is its mass number and  is its 

radiation length.  is the nucleon mass

๏  is the ALP propagation length, where  is its proper lifetime and  is its momentum

๏  is the Primakoff production cross section of the ALP in the dump

๏  is the angular acceptance times efficiency of the detector

๏  is the differential photon flux per initial electron, includes photons from the electron-laser interaction, 

as well as secondary photons produced in the EM shower which develops in the dump

๏  is the dump’s length. The dump is positioned ∼13 m away from the electron-laser interaction region

๏  is the length of the decay volume

๏ The decay rate of the ALP into two photons is 

Ne = 1.5 × 109 NBX( = 107)
Eγ
ℒeff ρW AW X0

m0 ∼ 930 MeV
La τa pa
σa(Eγ, Z)
𝒜
dNγ /dEγ

LD = 1 m
LV = 2.5 m

Γa→γγ = m3
a /(64πΛ2

a)



Noam Tal Hod, WIS Sept
emb

15 2021 62

Scalar and Naturalness
๏ The  coupling induces quadratically divergent, additive 

contribution to the scalar mass-square,  

๏  is the scale in which NP is required to appear in order to cancel 

the quadratic divergences 

๏ This leads to a naturalness bound:




๏ LUXE-NPOD is expected to reach the sensitivity required to probe the 
edge of the parameter space of natural models in its phase-1

ϕ − γ
δm2

ϕ ∼ Λ4
UV/(16π2Γ2

ϕ)
ΛUV

Γϕ ≳ 4 × 105 GeV ( ΛUV

TeV )
2 200 MeV

mϕ
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Signal MC prod. with MadGraph
๏ Generate this process: a nuc -> ax nuc where a is photon, nuc 

is the nucleus of the tungsten dump and ax is the ALP 
(Primakoff production)


๏ The nuclear form factor was obtained from Iftah Galon and 
implemented in the model


๏ MadGraph does not smear the vertex position, so all 
collisions happen at z=0, t=0


๏ Moreover MadGraph decays the ALP instantaneously

๏ The 2 photons are produced at z=0 and hence we need to 

displace them according to the ALP’s lifetime
LD = 1 m

LV = 2.5 m
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Signal MC prod. with MadGraph
๏ The distance of decay ( ) for each ALP is obtained by randomly drawing a length 

from the decay length distribution of the ALP, where:

๏ the decay length is 

๏ the direction is determined by the momentum of ALP

๏  is randomly drawn number from 


๏ Once  is obtained, the two photons are shifted to that position

๏ if  we proceed to next stage, otherwise the event is 

rejected

๏ given the opening angle of the photons and the distance they still need to travel to 

detector, we check if the photons impinge the detector or not. 

๏ if both photons impinge the detector and , then that event is 

accepted

๏ The acceptance 𝒜 is the number of events with both photons passing the energy cut 

and geometric constraints divided by the total number of events generated

๏ Once the geometric acceptance is obtained, the factor is multiplied by the effective 

luminosity and the cross-section of production to get the number of ALP events 
(see earlier slide) where  and where the sum is over sum 

over the incoming photon beam energy distribution  

rvtx

La = cτapa/ma

rvtx e−La

⃗rvtx
LD < rvtx cos θa < LD + LV

Eγ > 0.5 GeV

Na = ℒeff ∑
i

σi𝒜iNγ,i

Nγ,i

Analytical

MadGraph
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Signal MC prod. with MadGraph

More than 90% of the photons are captured by a 
detector with radius of 1 m 
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Signal MC prod. with MadGraph

Photons

energy

ALPs E

in acc.
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Signal MC with MadGraph

>90% of the photons are captured 
by a detector with radius of 1 m 

Photons

energy

ALPs 
energy 
in acc.

Δθ
Rdet
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Time scales @ LUXE-NPOD

๏ The relevant time scale of LUXE’s  800 nm laser itself is 

๏ The laser pulse duration is 

๏ The (Compton scattering) photon production timescale is 

๏ The (Breit-Wheeler) pair production timescale is 


๏ Therefore: 

ω−1
L ∼ 0.4 fs

tL ∼ 𝒪(10 − 200) fs
τγ ∼ 𝒪(10) fs

τee ∼ 𝒪(104 − 106) fs

ω−1
L ≪ τγ ≪ tL ≪ τee
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Why not electrons-on dump?

a, ϕe− γ
γ

Magnet

Electron beam dump

EMCal

M
uo

n 
ch

am
be

r

XFEL electrons on dump

(not to scale)

LS LD z
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Particles from e/γ-beam on 1m W dump

LUXE

γ-on-dump

XFEL

e-on-dump

Each simulation in the following is equivalent to about 2 BXs (i.e. 3e9 primary e’s)

Showing the number of particles - only those which arrive at the detector surface

neutrons

photons

neutrons

photons
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30 35 40 45 50
Dump length [cm]

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01n
N
γ

N

0.0002±= 0.0013/nγR=1.88, 
DoF
2χ

0.0002±= 0.0062/nγR=3.41, 
DoF
2χ

 NPODLUXE

Fit & 95% CI

Electrons on dump

Fit & 95% CI
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Probability to get 2 real photons
๏ 


๏  since the fit gives  and 

since , with  

(or in the e-on-dump case:  for  
 and )


๏   (or in the e-on-dump case: )

Pmγ
=

λmγ
γ e−λγ

mγ!

λγ = 0.013 ± 0.004 Rγ/n = 0.0013 ± 0.0002

Nn ≃ 10 λγ = NnRγ/n 1 ± 1
Nn

+
Δ2Rγ/n

Rγ/n

λγ ≃ 0.26 ± 0.04
Rγ/n ≃ 0.0062 ± 0.0002 Nn ≃ 42.6

P2γ =
λ2

γ e−λγ

2!
≃ 8.34 × 10−5 2.7 × 10−2
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Probability to get 2 fake photons
๏ 


๏   (or in the e-on-dump case: )


๏



๏



๏



๏    (or in the e-on-dump case:  )

Pn→γ = fn→γ

λn = λn(1 m) = 10 λn ≃ 42.6

P2n→2γ =
∞

∑
mn=2

λmnn e−λn

mn!
C(2,mn, Pn→γ)

P2n→2γ =
∞

∑
mn=2 ( λmnn e−λn

mn! ) ( mn!
2!(mn − 2)!

P2
n→γ × (1 − Pn→γ)mn−2) =

∞

∑
mn=2

λmnn e−λn × P2
n→γ × (1 − Pn→γ)mn−2

2!(mn − 2)!

P2n→2γ =
P2

n→γe−λnλ2
n

2 (1 + λn(1 − Pn→γ) +
λ2

n(1 − Pn→γ)2

2!
+ . . . ) =

P2
n→γe−λnλ2

n

2 (
∞

∑
k=0

(λn(1 − Pn→γ))k

k! ) =
P2

n→γe−λnλ2
n

2

∞

∑
k=0

xk

k!

ex

P2n→2γ =
P2

n→γλ2
ne−λneλn(1−Pn→γ)

2
= P2

n→γe−λnPn→γ
λ2

n

2
= 50f2

n→γe−10fn→γ
42.62

2
f2
n→γe−42.6fn→γ
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Probability to get 1 real + 1 fake photons
๏ For photons: ,   

๏
For neutrons: ,   ,    

 

 

  

 



๏ For one neutron and one photon:  

(or in the e-on-dump case: )

λγ = 0.013 ± 0.004 Pmγ
=

λmγ
γ e−λγ

mγ!
⇒ P1γ = λγe−λγ

Pn→γ = fn→γ λn = 10 ± 2.3 P1n→1γ =
∞

∑
mn=1

λmnn e−λn

mn!
C(1,mn, Pn→γ)
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mn! ) ( mn!
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λmnn e−λn × Pn→γ × (1 − Pn→γ)mn−1

(mn − 1)!

P1n→1γ = Pn→γe−λnλn (1 + λn(1 − Pn→γ) +
λ2

n(1 − Pn→γ)2

2!
+ . . . ) = Pn→γe−λnλn (

∞
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(λn(1 − Pn→γ))k

k! ) = Pn→γe−λnλn

∞

∑
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xk

k!

ex

P1n→1γ = Pn→γλne−λneλn(1−Pn→γ) = Pn→γe−λnPn→γλn

Pn+γ→2γ = P1n→1γ ⋅ P1γ = (λn fn→γe−λn fn→γ) ⋅ (λγe−λγ) ≃ 0.128fn→γe−10fn→γ

1.12fn→γe−42.6fn→γ
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Circle equation wrt the origin at the centre of the circle defined by the track: 


Therefore:   and hence  


The tangent equation is: . The tangent gradient, , is -1 over the gradient of 
the radius line itself, at the point where the tangent is defined at the point , i.e.: 

 


Using the point  again we get the intersection of the tangent: 





Hence, the prediction along the tangent at some point  is: 

 and so putting   

we get that 

X2 + Z2 = R2

Zexit = LB Xexit = R2 − L2
B

Z = mT ⋅ X + cT m
(Zexit , Xexit)

mT = − 1/mR = − 1/(ΔZ/ΔX)radius slope = − (Xexit − 0)
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Background estimation
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Photons production is 
correlated with neutrons

each point has 2 BXs simulated

Rγ/n (LD < Lnom
D )

๏ Background is mostly neutrons and photons

๏ we get 0 photons and 10 neutrons per BX for 2 BXs simulated


๏ This is inaccurate: need many more BXs for a proper estimate

๏ however, the simulation is very intensive computationally


๏ Instead, we see that the photon production is correlated with the 
neutrons production (in hadronic processes)


๏ Nγ can be extrapolated from the photons-to-neutrons ratio of shorter 
 dumps than the nominal, where we have enough photons:LD

Nγ (Lnom
D ) ≃ Nn (Lnom

D ) × Rγ/n (LD < Lnom
D )
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๏ Assuming

๏ one year of running with  live seconds, i.e. recorded BXs

๏ rejection is  from kinematics & timing

๏ neutron-to-photon fake rate is  


๏ Number of bkg two-photon events is 

๏ 

๏  (sub-dominant)

๏ 


๏ The probabilities are given by Poisson and Binomial laws: 

T ∼ 107

Rsel ≲ 10−3 − 10−4

fn→γ ≲ 10−3 − 10−4

Nbkg = PbkgRselToperation
bkg = 2γ
bkg = 2n → 2γ
bkg = γ + n → 2γ

Max 
Nbkg

LUXE 
NPOD

Electrons 
on dump

N2γ 0.4 133.9

N2n⟶2γ 0.1 1.1

Nγ+n⟶2γ 0.3 21.1

Assumptions Value

Top 1E+07

Rsel 5E-04

fn⟶γ 5E-04

Parameter LUXE

NPOD

Electrons  
on dump

Rγ/n (fit) 0.0013 0.0062

μn (count) 9.8 42.6

μγ (extrap.) 0.013 0.264

Background estimation

PNγ
=

μNγ
γ e−μγ

Nγ!
PNn→Nγ

=
∞

∑
kn=Nn

μknn e−μn

kn!
B(Nn, kn, fn→γ) Pn+γ→2γ = P1n→1γ ⋅ P2γ

Ntot
bkg < 1
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Fake photons from neutrons
๏ Most neutrons are very soft


๏ Very different shower shapes (γ vs n)

๏ harder neutrons are more similar


๏ Study done by Sasha Borysov (Staff 
scientist candidate at the faculty)

- 1 m long dump
- no energy cut
- two full BXs
Fraction of particles 
with Edep>0.38 GeV

- photons: 99.8%

- neutrons: 38.8%

Energy deposited per 
particle vs the layer  
of the calorimeter

PbWO4 

Calorimeter 

Sampling calorimeter 

Just counting:

fn→γ ∼ 10−20.5 GeV


photons

1 GeV

neutrons

1 GeV neutron

0.5 GeV photon
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Exploiting timing information

๏ The time it takes a bkg photon to fly from  at  to the detector face at 
, is 


๏ for , , ,  and 

๏ We trigger at  (Eu.XFEL clock) and open a short time window 


๏ most signal (and bkg) photons will arrive within 

๏ almost all bkg hadrons will arrive after that - need  resolution

z0 t0
z1 = zD + LD/2 + LV = 3.65 m t1 = t0 + (12 + Δt) ns

z0 = 0 t0 = 0 zD = 1 m LD = 0.3 m LV = 2.5 m
t0 Δt

Δt ≃ 0.5 ns
≲ 0.1 ns

*BACKGROUND*

30 cm long dump


E > 0.5 GeV

t0

*SIGNAL*

(MadGraph)


30 cm long dump

E > 0.5 GeV

Neutrons/protons

fly slower…

t1
t0 Δt

t1

Take  dump

here just to have stats.

(nominally: )

LD = 30 cm

LD = 1 m

Rneutrons
sel ∼ 10−3
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Contours of the expected number of  

events, , for phase-0 and phase-1

a, ϕ → 2γ
Na,ϕ

LUXE-NPOD
phase-1

0.3

3

30

300

3000

5�10-2 10-1 5�10-1

10-6

10-5

10-4

10-3

ma,ϕ [GeV]

1/
Λ
a,
ϕ[
G
eV

-
1 ]

LUXE-NPOD
phase-0

0.3

3

30

300

3000

5�10-2 10-1 5�10-1

10-6

10-5

10-4

10-3

ma,ϕ [GeV]
1/
Λ
a,
ϕ[
G
eV

-
1 ]

The lines correspond to 1 year of data taking.

The nominal curve is for  which is the 95 % CL equivalent for background free searchNa,ϕ = 3
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LUXE-NPOD
primary new physics production
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New Physics production at the IP

z

Zero beam and/or Compton
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(not to scale)

LD LV

๏ Axion-like particles (ALPs)

๏ or scalars ( )


๏ Milli-charged particles (mCPs)

๏  and 

X = a, ϕ

mψ ≪ me qψ ≡ qe ≪ e

e�V
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arXiv:2107.13554

*28 Jul 2021*
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Setting the number of observed signal-like events to , 
which is the 95 % CL equivalent for background free search

Na = 3

LUXE-NPOD

https://arxiv.org/abs/2107.13554
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Profiler - why Sapphire Al2O3?

๏ High radiation resistance: ~ 10 MGy

๏ Leakage current does not increase with dose

๏ High e-h creation energy

๏ Low collection efficiency (~10%)

๏ Fast response

๏ low electron mobility compensated by reduced distance travelled by electrons


๏ Low Cost: 1€/cm2 (compared to diamond 3000 €/cm2)

๏ Intensively tested as beam halo and beam loss monitors at CMS (LHC)

Material properties sapphire diamond silicon
density [g/cm3] 3.98 3.52 2.33
bandgap [eV] 9.9 5.47 1.12
energy to create an eh pair [eV] 27 13 3.6
dielectric constant 9.3-11.5 5.7 11.7
dielectric strength [V/cm] 4.0E+05 1.0E+06 3.0E+05
resistivity [Ohm cm] at 20 C 1.0E+16 1.0E+16 1.0E+05
electron mobility [cm2/(V s)] at 20 C 600 2800 460
MIP eh created [eh/µm] 22 36 73

S. Schuwalow et al.: Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II / JINST 10 P08008 


