A Reduced Model for Breit-Wheeler Pair Production by a Gaussian or Laguerre-Gaussian Laser Beam of Arbitrary Polarization and a Gamma flash

A. Mercuri-Baron ${ }^{1}$, M. Grech ${ }^{1}$, F. Niel ${ }^{1}$, A. Grassi ${ }^{1}$, M.Lobet ${ }^{2}$, A. Di Piazza ${ }^{3}$ and C. Riconda ${ }^{1}$

1 LULI, Sorbonne Université, CNRS, CEA, École Polytechnique, France
2 Maison de la Simulation, CEA, CNRS, Université Paris-Sud, France
3 Max Planck Institute for Nuclear Physics, Germany

Max-Planck-Institut
Four Kernphysik

Reduced model for laser spatio-temporal shape

A model for pair production in head-on collision of a laser pulse and gamma photons (electrons)

Parametric study at fixed laser energy and focus on the soft shower regime of pair production (low secondary pairs)
> Time dependence and 'building block'
> Role of the laser pulse's spatial shape (Laguerre-Gauss beams)

Typical setup

Reminder : Nonlinear Breit-Wheeler

Gamma photon propagating in a laser field

Rate of pair production by photon decay (LCFA)

$$
W_{\mathrm{BW}}=W_{0} \frac{b_{0}\left(\chi_{\gamma}\right)}{\gamma_{\gamma}}
$$

$$
\begin{gathered}
W_{0}=\frac{2 \alpha m c^{2}}{3 \hbar}=3.8 \times 10^{18} \mathrm{~s}^{-1} \\
\gamma_{\gamma}=\frac{\hbar \omega_{\gamma}}{m_{e} c^{2}}, \quad a_{0}=\frac{e E_{0}}{m c \omega}, \quad \chi_{\gamma} \propto \gamma_{\gamma} \frac{E_{0}}{E_{S}} \propto \gamma_{\gamma} a_{0}
\end{gathered}
$$

In the soft shower regime (no secondary gamma photons)

$$
\frac{d}{d t} N_{\gamma}=-W_{\mathrm{BW}}(t) N_{\gamma}
$$

The probability for a photon to decay in Δt

$$
P(\Delta t)=1-\exp \left[-\int_{t_{0}}^{t_{0}+\Delta t} W_{\text {Key element }}\left(t^{\prime}\right) d t^{\prime}\right]
$$

Pair creation in a plane wave

Head-on collision with a plane wave

Field : $\mathbf{E}(z, t)=\frac{E_{0}}{\sqrt{1+\varepsilon^{2}}}[\sin (\omega t-k z) \hat{\mathbf{x}}+\varepsilon \cos (\omega t-k z) \hat{\mathbf{y}}]$
$\varepsilon=$ polarisation (normalisation constant energy)

$$
\begin{gathered}
\text { Photon quantum parameter : } \chi_{\gamma}(t)=2 \gamma_{\gamma} \frac{E_{0}}{E_{S}} \sqrt{\frac{\sin ^{2}(2 \omega t)+\varepsilon^{2} \cos ^{2}(2 \omega t)}{1+\varepsilon^{2}}}
\end{gathered} \begin{aligned}
& \begin{array}{l}
\Psi_{\varepsilon}(2 \omega t) \\
\chi_{\gamma}(t)=\chi_{0}|\sin (2 \omega t)| \text { for LP } \\
\chi_{\gamma}=\chi_{0} / \sqrt{2} \text { for } \mathrm{CP}
\end{array} \\
& \begin{array}{l}
\text { Time dependent and } \tau / 4 \text { periodic } \\
\text { (half period crossing, e.g. LP } \rightarrow \text {) }
\end{array} \\
& \int_{0}^{\tau / 4} W_{\mathrm{BW}}\left(t^{\prime}\right) d t^{\prime}=\frac{W_{0}}{2 \omega \gamma_{\gamma} \frac{\int_{0}^{\pi} b_{0}\left(\chi_{0} \Psi_{\varepsilon}(\varphi)\right) d \varphi}{J_{\varepsilon}\left(\chi_{0}\right)}}
\end{aligned}
$$

Probability in a LP plane wave

Example LP $(\varepsilon=0): \mathcal{J}_{0}\left(\chi_{0}\right)=\int{ }_{0}^{\pi} b_{0}\left(\chi_{0} \sin (\varphi)\right) \mathrm{d} \varphi$ can be solved numerically or analytical approximation :

$$
\begin{gathered}
\mathcal{J}_{0}\left(\chi_{0}\right) \simeq \pi b_{0}\left(\chi_{0}\right) \min \left\{F\left(\sqrt{\frac{2 b_{0}\left(\chi_{0}\right)}{3 \chi_{0} b_{0}^{\prime}\left(\chi_{0}\right)}}\right), f\right\} \\
\left(\begin{array}{l}
F(s)=\sqrt{2 / \pi} s \operatorname{erf}(\pi \sqrt{2} /(4 s)) \\
f=\frac{1}{\pi} \int_{0}^{\pi} \sin ^{2 / 3}(\varphi) \mathrm{d} \varphi
\end{array}\right.
\end{gathered}
$$

The probability to create a pair after a half period crossing $P(\tau / 4)=1-\exp \left[-\frac{W_{0}}{2 \omega / \mathcal{I V}_{\gamma}} \mathcal{J}_{0}\left(\chi_{0}\right)\right]$
N.B. $P\left(\tau / 4, a_{0}, \gamma_{\gamma}\right)$

Probability after half period crossing (LP)

Numerical solution of the equicontours of constant probability :
straight lines at low a_{0}, γ_{ν} but cross values of constant χ_{0} minimum a_{0} for a given probability, along the line $\chi_{0} \sim 16.5$

Analytical approximation

Cross benchmark with PIC/MC

Excellent match with PIC/MC Smilei)* simulations

Generalization to more complex space and time dependences

Finite pulse duration and parameter space

Probability $P_{t o t}(t) \simeq 1-e^{-R t}$ with the (local) average rate $R=\frac{4}{n \tau} \sum_{m=1}^{n} \frac{W_{0}}{2 \omega \gamma_{\gamma}} J_{0}\left(\chi_{m}\right)$

High probability isocontour ($\mathrm{P}>0.63$) for different time durations

Building block, χ_{m} at local maximum
\# of
maxima crossed in t

Plane wave of finite duration

Laguerre-Gauss beams and space dependence

Complex envelope $u_{p \ell}(\rho, \phi, z)=C_{p \ell} \frac{w_{0}}{w(z)}\left(\frac{\sqrt{2} \rho}{w(z)}\right)^{|\ell|} L_{p}^{|\ell|}\left(\frac{2 \rho^{2}}{w^{2}(z)}\right) \exp \left[-\frac{\rho^{2}}{w^{2}(z)}\right] \exp \left[-i \psi_{p l}(z)+i \ell \phi+i \frac{z \rho^{2}}{w^{2}(z)}\right]$
Solutions of the paraxial equation with constant total energy

Generalised phase

The beam's transverse size increases with ℓ, the amplitude decreases

Normalised field

Maximum amplitude

Photon quantum parameter

Total cross section of pair creation

Compute the time integrated probability for a finite time duration

Example $\ell=5$
$a_{0}=2000, \gamma_{\gamma}=400$ $\tau_{\text {FWHM }}=5 \tau$

Prediction

probability map

3D PIC/MC Smilei)

Total cross section $\sigma_{t o t}=\iint P_{\text {tot }} \mathrm{dxdy}$ N.B. Integral over interaction region

Number of pairs $N_{\text {pair }}=\sigma_{t o t} n_{\gamma} L_{\gamma}$

First set of PIC/MC Smilei) simulations

$$
a_{0}=2000, \gamma_{\gamma}=400, \tau_{\mathrm{FWHM}}=5 \tau, \chi_{0}=4.85
$$

Pair creation in less focused Gaussian beams

$$
\begin{aligned}
& \text { Comparison with Extended Gaussian (EG) } \\
& a_{0}=2000, \gamma_{\gamma}=400, \tau_{\text {FWHM }}=5 \tau, \chi_{0}=4.85
\end{aligned}
$$

Extended Gaussian (EG) are constructed in order to have the same total energy and the same peak value as the LG of the corresponding order
$\ell \neq 0, \mathrm{p}=0$

Number of produced pairs in EG higher than LG for $\ell<4$ (bigger interaction area)

LG beams vs EG for lower intensities

Importance of a_{o} versus γ_{γ}

$$
\begin{gathered}
\text { Second set of PIC/MC Smilei) simulations } \\
a_{0}=400, \gamma_{\gamma}=2000, \tau_{\text {FWHM }}=5 \tau, \chi_{0}=4.85
\end{gathered}
$$

High probability isocontours ($\mathrm{P}>0.63$)

Start from lower a_{0} : increasing the size is not enough to compensate for the field's amplitude diminution, no improvement on pair production.

Guidelines for upcoming facilities

Model's prediction for $\tau_{F W H M}=25 \mathrm{fs}, \lambda=0.8 \mu \mathrm{~m}$

Strategy for optimisation

Facilities in black: increase focal spot size (no tight focus) as the maximum probability is already ~ 1

Facilities in white : need to increase laser amplitude (tight focus) in order to have significant pair creation

Dotted red lines $=$ constant $\chi_{0}(0.1 ; 1 ; 16.5)$

Thank you

More details : A. Mercuri-Baron et al 2021 New J. Phys. 23085006

