Towards the measurement of the quantum-vacuum Lagrangian coupling coefficients using two counterpropagating super-intense laser pulses

Luis Roso, CLPU Director

MAP OF UNIQUE SCIENTIFIC AND TECHNICAL INFRASTRUCTURES (ICTS)

CENTRO DE LÁSERES PULSADOS

ExHILP 2021 Jena 4th Extremely High Intensity Laser Physics Conference

CENTRO DE LÁSERES PULSADOS

Dense light

Realization of laser intensity over 10²³ W/cm²

JIN WOO YOON,^{1,2,†} YEONG GYU KIM,^{1,3,†} IL WOO CHOI,^{1,2} ^(D) JAE HEE SUNG,^{1,2} HWANG WOON LEE,¹ ^(D) SEONG KU LEE,^{1,2,4} ^(D) AND CHANG HEE NAM^{1,3,5} ^(D) Luis Roso et al ExHILP 2021 Jena

Photon-photon

What is the intensity where virtual pairs start having a measurable effect?

Generation of real pairs

 10^{19} W/cm^2 10^{20} W/cm^2 10^{21} W/cm^2 10^{22} W/cm^2 10^{23} W/cm² 10^{24} W/cm^2 10^{25} W/cm² $10^{26} \, W/cm^2$ $10^{27} \, W/cm^2$ 10^{28} W/cm^2

 $10^{29} \, W/cm^2$

QED lagrangian

What is the contribution of those nonlinear terms?

$$\begin{array}{l} \overbrace{for \ h\nu \ll m_e c^2} \\ \hline being \quad \mathcal{L}_0 = \frac{\epsilon_0}{2} \left(\mathbf{E}^2 - c^2 \mathbf{B}^2 \right) \end{array} \begin{array}{l} \mathcal{G} = \epsilon_0 c(\mathbf{E} \cdot \mathbf{B}) \end{array}$$

In QED (Euler-Heisenberg)

$$\xi_L^{QED} = \xi_T^{QED} \equiv \xi = \frac{8\alpha^2\hbar^3}{45m_e^4c^5} = 6.7 \times 10^{-30} \frac{m^3}{J}$$

W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des Positrons Z. Phys. 98, 714 (1936)

In the Born-Infeld model

$$\xi_T^{BI} = 4\xi_L^{BI}/7$$

Proposed to remove the divergence of the electron's self-energy in classical electrodynamics by introducing an upper bound of the electric field at the origin

M. Born and L. Infeld, Foundations of the New Field Theory, Proc. Roy. Soc. Lond. 144 (1934) 425.

The presence of particles beyond the Standard Model can modify the coupling coefficients:

$$\mathcal{G} = \epsilon_0 c(\mathbf{E} \cdot \mathbf{B})$$

- Axions
- Minicharged particles (scalar or vector)

Springer Series in Chemical Physics 106

Kaoru Yamanouchi Gerhard G. Paulus Deepak Mathur *Editors*

Progress in Ultrafast Intense Laser Science X

Springer

Chapter 9.-

Quantum Vacuum Polarization Searches with High Power Lasers Below the Pair Production Regime

Daniele Tommasini,

David Novoa and Luis Roso

PUILS X, 2014

Original paper

PUILS

- JILS

Detecting photon-photon scattering in vacuum at exawatt lasers Daniele Tommasini, et al Phys Rev A 77 (2008)

Optical signal

Competical-optical interaction: pump-probe **Key Point:** QED coefficients result directly in a phase change of the probe field **Intense field** probe field $\left| \mathcal{L}_0 = rac{\epsilon_0}{2} \left(\mathbf{E}^2 - c^2 \mathbf{B}^2 \right) \right| \quad \mathcal{G} = \epsilon_0 c (\mathbf{E} \cdot \mathbf{B})$ $E_{tot} = E_{pump} + E_{probe}$ τ pulse duration $E_{tot}^{2} = (E_{pump} + E_{probe})^{2} = E_{pump}^{2} + 2E_{pump}E_{probe} + E_{probe}^{2}$ I Intensity k wavector

Detecting photon-photon scattering in vacuum at exawatt lasers Daniele Tommasini, et al Phys Rev A 77 (2008) Luis Roso et al ExHILP 2021 Jena

Competical-optical interaction: pump-probe **Key Point:** QED coefficients $\Delta \phi_L = 4\xi_L I k \tau$ result directly in a phase change $\Delta \phi_T = 7\xi_T I k \tau$ of the probe field **Intense field** probe field $\left| \mathcal{L}_0 = rac{\epsilon_0}{2} \left(\mathbf{E}^2 - c^2 \mathbf{B}^2 \right) \right| \quad \mathcal{G} = \epsilon_0 c (\mathbf{E} \cdot \mathbf{B})$ $E_{tot} = E_{pump} + E_{probe}$ au pulse duration $E_{tot}^2 = \left(E_{pump} + E_{probe}\right)^2 = E_{pump}^2 + 2E_{pump}E_{probe} + E_{pobe}^2$ I Intensity k wavector

Detecting photon-photon scattering in vacuum at exawatt lasers Daniele Tommasini, et al Phys Rev A 77 (2008)

From the idea to a real experiment

Probing the quantum vacuum with petawatt lasers

W T Hill III¹ and L $Roso^2$

¹Joint Quantum Institute, Institute for Physical Science and Technology and Department of Physics, University of Maryland, College Park, MD 20742, USA ²Centro de Láseres Pulsados, CLPU, Salamanca, Spain

E-mail: wthQumd.edu

Abstract. Due to the bosonic nature of the photon, increasing the peak intensity through a combination of raising the pulse energy and decreasing the pulse duration will pile up more and more photons within the same finite region of space. In the absence of material, this continues until the vacuum is stressed to the point of breakdown and virtual particles become real. The critical intensity where this occurs for electrons and positrons – the so-called Schwinger limit – is predicted to be ~ 10^{29} W/cm². At substantially lower intensities, however, nonlinear aspects of the quantum vacuum associated with polarization of the vacuum can be explored. These studies become viable at the petawatt level where 10^{23} W/cm² and above can be reached. This is an era into which we are just embarking that will provide critical tests of QED and theories beyond the *Standard Model* of particle physics.

Probing the quantum vacuum with petawatt lasers

$$\mathcal{L} = \mathcal{L}_0 + \xi_L \mathcal{L}_0^2 + rac{7}{4} \xi_T \mathcal{G}^2$$

 Frontiers in Theoretical and Applied Physics/UAE 2017 (FTAPS 2017)
 IOP Publishing

 IOP Conf. Series: Journal of Physics: Conf. Series 869 (2017) 012015
 doi:10.1088/1742-6596/869/1/012015

Probing the quantum vacuum with petawatt lasers

W T Hill III¹ and L $Roso^2$

¹Joint Quantum Institute, Institute for Physical Science and Technology and Department of Physics, University of Maryland, College Park, MD 20742, USA ²Centro de Láseres Pulsados, CLPU, Salamanca, Spain

E-mail: wth@umd.edu

Abstract. Due to the bosonic nature of the photon, increasing the peak intensity through a combination of raising the pulse mergy and decreasing the pulse duration will pile up more and more photons within the same finite region of space. In the absence of material, this continues until the vacuum is stressed to the point of breakdown and virtual particles become real. The critical intensity where this occurs for electrons and positrons – the so-called Schwinger limit – is predicted to be ~ 10⁵⁰ W/cm². At substantially lower intensities, however, nonlinear aspects of the quantum vacuum associated with polarization of the vacuum can be explored. These studies become viable at the petawati level where 10²³ W/cm² and above can be reached. This is an era into which we are just embarking that will provide critical tests of QED and theories beyond the Standard Model of particle physics.

Collision scenario

Optical-optical interaction

$$d\phi_T = 7\xi_T k_{probe} \rho_e dz$$

Precision tests of QED and non-standard models by searching photon-photon scattering in vacuum with high power lasers JHEP, 2009

Beam A element x,y

Luis Roso et al ExHILP 2021 Jena

D Tommasini et al

Optical-optical interaction

D Tommasini et al $d\phi_L = 4\xi_L k_{probe} \rho_e dz$ Precision tests of QED and non-standard models by searching photon-photon scattering in vacuum with high power lasers JHEP, 2009

Beam A element x,y

$$\Delta \phi_L = 4\xi_L k_{probe} \rho_e c \ \tau_{probe} = 4\xi_L k_{probe} \ I_{probe} \ \tau_{probe}$$
$$\Delta \phi_T = 7\xi_T k_{probe} \rho_e c \ \tau_{probe} = 7\xi_T k_{probe} \ I_{probe} \ \tau_{probe}$$

CENTRO DE LASERES PULSADOS

Pump 800 nm Airy f-number 3 Probe 800 nm Gauss waist 16 µm

CENTRO DE LÁSERES PULSADOS

Short focus / high f-number / wide angle

Pump duration

Pulse duration smaller than Rayleigh length of focus to guarantee that all energy of the pump is on the focus at the same time

Pump profile

Pump: all photons of the pump are very relevant! Not filtered Flat top profile is the most realistic for ultraintese lasers Tight focus, small focal number

Luis Roso et al ExHILP 2021 Jena

For example

CLPU PW laser beam profile

Beam configuration: Probe

We need to detect a very small amount of photons scattered out of the probe.

It is fundamental a probe with very low intrinsic diffraction

- High beam quality TEM₀₀ as good as possible
- Wide focus to have its intrinsic diffraction pattern inside the pump cone.

We consider a probe 800 nm Gaussian TEM₀₀ Intensity 10²⁰ W/cm² Beam waist 16 microns Pulse Duration 30 fs

Scattered photons

C Number of scattered photons

Extremely low number of scattered photons Our calculation considers detection angle of 1 deg² On axis this means 3.7 x 10¹⁹ photons / shot Probe TEM₀₀ at 800 nm Intensity 10²⁰ W/cm² Waist 16 microns Duration 30 fs

Composition Number of scattered photons

Extremely low number of scattered photons Our calculation considers detection angle of 1 deg² On axis this means 3.7 x 10¹⁹ photons / shot Probe TEM₀₀ at 800 nm Intensity 10²⁰ W/cm² Waist 16 microns Duration 30 fs

3.7 x 10¹⁹ photons / shot

Number of scattered photons

Extremely low number of scattered photons Our calculation considers detection angle of 1 deg² On axis this means 3.7 x 10¹⁹ photons / shot

C

Probe TEM₀₀ at 800 nm Intensity 10²⁰ W/cm² Waist 16 microns Duration 30 fs

Realistic conditions diffraction integrals

$$F_{\text{signal}}^{\text{L}}(\zeta) = -\frac{i}{\lambda_{\text{B}}} \int_{0}^{\text{R}} 2\pi\rho E_{\text{probe}}(\rho) \exp(i\phi_{\text{L}}(\rho)) J_{0}(k_{\text{B}}\rho\zeta) d\rho$$

Pump 800 nm Airy f-number 3 Probe 800 nm Gauss waist 16 um

CENTRO DE LÁSERES PULSADO

Influence probe wavelength

Compute Parallel polarizations Pump 800 nm Airy f-number 3 Probe 400 nm Gauss waist 16 um

Influence of the offset

Conclusions

Compossible lasers

Extreme Laser Infrastructure

Center	Name	Power	Energy	Duration	Wavelength	Rep Rate
ELI Beams	HALPS	1 PW	30 J	30 fs	800 nm	10 Hz
Czech rep	DUHA	100 TW	30 J	30 fs	800 nm	50 Hz
ELI Beams	ATON	10 PW	1500 J	150 fs	1060 nm	1/minute
Czech rep		IPVV	150 J	150 IS		
ELI NP	HPLS	10 PW	300 J	30 fs	800 nm	1/minute
Romania		10 PW	300 J	30 fs		1/minute
ELI NP	HLPS	1 PW	30 J	30 fs	800 nm	1 Hz
Romania		1 PW	30 J	30 fs		
ELI NP	HPLS	100 TW	30 J	30 fs	800 nm	10 Hz
Romania		100 TW	30 J	30 fs		
ELI ALPS	HF	1 PW	20 J	20 fs	800 nm	10 Hz
Hungary		100 TW	1 J	10 fs		

Other projects in Russia (XCELLS), US, China, Korea, Japan

CENTRO DE LÁSERES PULSADOS

Roberto Lera Smrithan Ravichandran Andrew Longman Calvin Z He José Antonio Pérez-Hernández Jon I Apiñaniz Lucas D Smith **Robert Fedosejevs** Wendell T Hill, III

Direct, precision measurement of the quantumvacuum Lagrangian coupling coefficients using two counter-propagating super-intense laser pulses NJP Submitted for publication

Towards the measurement of the quantumvacuum Lagrangian

Work in progress

Acknowledgements: CLPU team: Laserlab Europe V Grant No. 871124, and from Junta de Castilla y León, Grant No. CLP087U16. Univ of Maryland team: National Science Foundation Grant # PHY2010392. Univ of Alberta team : Natural Sciences and Eng. Research Council of Canada (RGPIN-2019-05013).

CLPU is a user facility open to domestic and international users

50% Spanish Central Government (Ministerio de Ciencia)
45% Regional Government (Junta de Castilla y León)
5% University of Salamanca MAP OF UNIQUE SCIENTIFIC AND TECHNICAL INFRASTRUCTURES (ICTS)