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Einstein-Vlasov in the New York Times 1991

(Reconsidered 2019 by W. East who finds numerical support in
favour of weak CC.)
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Criticism raised by Alan Rendall ’92

Shapiro and Teukolsky first made simulations for the
Vlasov-Poisson (VP) system. They then generalized this code
to the relativistic case.

In their VP code they took data close to dust (since the dust
solution is known) and found that the kinetic energy and the
potential energy diverge as the singularity was approached.

Shapiro and Teukolsky considered this as support for the
reliability of their numerical code. Dust and Vlasov matter,
however, behave very differently in some situations.

Pfaffelmoser and Lions/Perthame showed in the early ’90s
that global existence holds for the Vlasov-Poisson system. In
particular, the kinetic energy and the potential energy do not
blow up.
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Dust from Vlasov

Dust is a pressureless fluid which can be approximated by Vlasov
matter.

The Vlasov equation is linear in f and distributional solutions make
sense. One class of distributional solutions is given by

f (xγ , pa) = −u0|g |−1/2ρ(xγ)δ(pa − ua),

where ρ ≥ 0 and ua(xγ) is a mapping from spacetime into the
mass shell and u0 is given by ua from the mass shell relation.

Solutions of the EV system where the phase space density f has
this form are in one-to-one correspondence with dust solutions of
the Einstein equations with density ρ and four-velocity uα.

Dust may thus be considered as a singular case of matter
described by the Vlasov equation.
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The Euler-Poisson system and the Vlasov-Possion system

The pressureless Euler-Poisson system reads

∂tρ+∇ · (ρu) = 0,

∂tu + (u · ∂x)u = −∂xU(t, x),

∆U = 4πρ, lim
|x |→∞

U(t, x) = 0.

The Vlasov-Possion system reads

∂t f + v · ∂x f − ∂xU · ∂v f = 0,

∆U = 4πρ, lim
|x |→∞

U(t, x) = 0,

ρ(t, x) =

∫
f (t, x , v) dv .
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A collapsing ball of dust

Let

ρ(t, x) :=
3

4π

1

r3(t)
1Br(t)(0),

where r(t) solves

r̈ = − 1

r2
, r(0) = 1, ṙ = 0.

Also, let

u(t, x) =
ṙ(t)

r(t)
x ,

then (ρ, u,U) is a solution of the Euler-Poisson system above
(where U is determined via the Poisson equation).

This solution describes a ball of dust, initially at rest, which
collapses under its own gravitational field to a point in finite time,
since it can be shown that limt→T r(t) = 0 for some T > 0.
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If we swop matter model, from dust to Vlasov, and consider the
Vlasov-Poisson system instead, then the global existence results for
the Vlasov-Poisson system guarantee that no singularity will form.

The global existence results say nothing about the behaviour for
such solutions, only that they will not break down. In a work by
Rein and Taegert (2016) this question is investigated more
carefully.

Theorem

For any constants C1,C2 > 0 there exists a smooth, spherically
symmetric solution f of the Vlasov-Poisson system such that
initially

‖ρ(0)‖∞ < C1,

but at some time t > 0

‖ρ(t)‖∞ > C2.
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Dust collapse in general relativity

The homogeneous Oppenheimer-Snyder collapse from 1939, and
the numerous investigations about inhomogeneous dust collapse,
have had an immense impact in general relativity.

In particular there is a huge literature on dust collapse in cases
where naked singularities form.
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A review of the theory of dust collapse

In the literature on dust collapse it is standard to use co-moving
coordinates where the metric is written as follows:

ds2 = − dt2 + e2λ(t,r)dr2 + R2(t, r)
(
dθ2 + sin2 θ dϕ2

)
. (1)

Asymptotic flatness means that the metric quantities λ and R
satisfy the boundary conditions

lim
r→∞

λ(t, r) = 0, lim
r→∞

R(t, r)

r
= 1.

A regular center requires that

lim
r→0

reλ(t,r)

R(t, r)
= 1.
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The Einstein-Euler system

The Einstein-dust system consists of the Euler equations

uα∇αuβ := uα
(
∂αuβ − Γγαβuγ

)
= 0, (2)

uα∇αρ+ ρ∇αuα = 0 (3)

coupled to the Einstein equations with energy momentum tensor

Tαβ = ρuαuβ. (4)
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We use comoving coordinates and require that the four velocity
field initially is given by

uα|t=0 = (1, 0, 0, 0), uα|t=0 = (−1, 0, 0, 0).

Since Γ0
0β = 0 for a metric of the form (1),

uα = (1, 0, 0, 0), uα = (−1, 0, 0, 0)

solves (2). The energy momentum tensor takes the form

T00 = ρ, Tαβ = 0 for (α, β) 6= (0, 0),

and the continuity equation (3) becomes

∂tρ+

(
∂tλ+ 2

∂tR

R

)
ρ = 0.
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We also write down the field equations again for the case at hand:

2R∂tR∂tλ+ 2Re−2λ∂rR∂rλ+ (∂tR)2 − 2Re−2λ∂2
r R

− e−2λ(∂rR)2 + 1 = 8πR2ρ,

∂rR∂tλ− ∂r∂tR = 0,

2R∂2
t R + (∂tR)2 − e−2λ(∂rR)2 + 1 = 0,

R(∂tλ)2 + ∂tR∂tλ+ R∂2
t λ+ ∂2

t R − e−2λ∂rR∂rλ

− e−2λ∂2
r R = 0.

As initial condition we prescribe

ρ(0, r) = ρ̊(r), R(0, r) = R̊(r), ∂tR(0, r) = v̊(r). (5)
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Solution of the Einstein-dust system

Given initial data as prescribed in (5) we define

m̊(r) := 4π

∫ r

0
R̊2(s)R̊ ′(s)ρ̊(s) ds,

and

W−2(r) := (v̊(r))2 + 1− 2m̊(r)

R̊(r)
(≥ 0).

Let R = R(t, r) solve the master equation

∂tR(t, r) = −

√
2m̊(r)

R(t, r)
+ W−2(r)− 1,

then λ and ρ are given by

eλ(t,r) = W (r) ∂rR(t, r),

ρ(t, r) =
R̊2(r)R̊ ′(r)

R2(t, r)∂rR(t, r)
ρ̊(r).
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Solving the master equation

The master equation reads

∂tR(t, r) = −

√
2m̊(r)

R(t, r)
+ f (r), (6)

where f (r) = (W (r))−2 − 1.

Using separation of variables the following function turns up:

G (y) :=


arcsin

√
y

y3/2 −
√

1−y
y , 0 < y ≤ 1,

2
3 , y = 0,

−arcsinh
√
−y

(−y)3/2 −
√

1−y
y , −∞ < y < 0.
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If we define

t0(r) :=
R̊(r)3/2G

(
− R̊(r)f (r)

2m̊(r)

)
√

2m̊(r)

then for 0 ≤ t ≤ t0(r), r > 0 the implicit relation

t0(r)− t =
R3/2G

(
− Rf (r)

2m̊(r)

)
√

2m̊(r)

defines the desired solution to (6).

Since limt→t0(r) R(t, r) = 0, t0(r) is the coordinate time at which
the solution blows up at r which is the time by which the dust
particle which started out initially at r has reached the center.
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Trapped surfaces

The general condition for a trapped surface in the given
coordinates is that along all radial null geodesics

d

dτ
R(t, r) =

dt

dτ

(
∂tR + ∂rR

dr

dt

)
< 0,

which together with
dr

dt
= ±e−λ

and the fact that ∂tR ≤ 0 means that

∂tR(t, r) < −e−λ(t,r)∂rR(t, r). (7)

For the dust case this is equivalent to√
2m̊(r)

R(t, r)
+ f (r) >W−1(r)

which in turn can be written as

R(t, r) < 2m̊(r). (8)
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If we take initial data which contain no trapped surface and
observe that as

lim
t→t0(r)

R(t, r) = 0,

it follows that there is a unique time tH(r) ∈]0, t0(r)[ such that
R(tH(r), r) = 2m̊(r), which is given by the relation

t0(r)− tH(r) = 2m̊(r)G (−f (r)) (9)

which follows from (7) and characterizes the time when a trapped
surface forms at r .

Hence we have derived expressions for both the blow up time t0(r)
and the time when a trapped surface forms tH(r).
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The Oppenheimer-Snyder solution

A special case is the Oppenheimer-Snyder solution for which
W (r) ≡ 1 and

ρ̊ = c 1[0,1].

Then for r ≤ 1

R(t, r) =
(

1−
√

6πc t
)2/3

r =: γ(t)r ,

ρ(t, r) =
c

γ3(t)
,

and
eλ(t,r) = ∂rR(t, r).

Moreover,

t0(r) =
1√
6πc

, tH(r) =
1√
6πc
− 16πc

9
r3.
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Remark on stability and instability

A general feature of the dust solutions is that they blow up in finite
time independently of the amplitude c ; if the amplitude is taken
very small, the blow up occurs later but still after a finite time.

Hence, the Einstein-Dust system might be said to be unstable.

How does this relate to the stability results for the EV system? For
small initial data global existence has been shown for the
Einstein-Vlasov system:

Rein and Rendall ’92 in spherical symmetry.

Lindblad and Taylor ’17 in the general case

Fajman, Joudioux and Smulevici ’17 in the general case
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Approximate dust with Vlasov matter

Roughly, to approximate dust we choose

f̊ (x , v) = hε(v)ρ̊(x),

where hε is approximating a Dirac delta function, and
ρ̊(x) = c1[0,1].

Hence we have two parameters, ε and c . If we fix c and let ε→ 0
then f̊ →∞, whereas if we fix ε and let c → 0 then f̊ → 0.

In the former case the above stability results do not apply whereas
in the latter they do.

This simple observation shows a fundamental difference between
dust and Vlasov matter!
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The Einstein-Vlasov system in co-moving coordinates

In kinetic theory the movement of the particles is complex and one
cannot speak about co-moving coordinates literally. However, in
order to compare solutions for dust and for the EV system it is
convenient to use the same type of coordinates.

(In fact local existence fails at r = 0 in co-moving coordinates.
However, we can show local existence using other coordinates
where dust collapse also can be described in a natural way.)
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Approximate dust solutions by EV solutions

It is possible to approximate dust solutions arbitrary well by a
solution of the Einstein-Vlasov system on any time interval [0,T ],
where T < t0.

Remark: The solution of the Einstein-Vlasov system is regular also
at the boundary of the collapsing body.

The following result is in preparation together with Gerhard Rein.

Theorem

Consider a collapsing dust solution with blow up time t0. Given
δ > 0 and T < t0, there exists initial data for the Einstein-Vlasov
system such that the corresponding solutions are “δ-close” to the
dust solution for all t ∈ [0,T ].
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Naked singularities for dust

In the Oppenheimer-Snyder collapse the density is homogeneous
within the matter; ρ(t, r) = ρ(t). It is well-known that
inhomogeneous data can be prescribed which lead to naked
singularities for dust.

Numerically this was first studied by Eardley and Smarr in 1979
and then a rigorous proof was given by Christodoulou 1984:

Time functions in numerical relativity: Marginally bound dust
collapse, Phys. Rev. D 19, 2239 (1979).

Violation of Cosmic Censorship in the Gravitational Collapse
of a Dust Cloud, Commun. Math. Phys. 93, 171-195 (1984).

It is of great interest to evolve initial data for the Einstein-Vlasov
system having the property that analogous data for dust form
naked singularities.
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Naked singularity data

We consider initial data specified by Eardley and Smarr.

For 0 ≤ r ≤ 1 let

ρ̊(r) =
1

6π
(t̊ + ζrp)−1(t̊ + ζ(1 + 2p/3)rp)−11[0,1](r),

where ζ, p, t̊ ∈ [0,∞[ are parameters. It follows that for 0 ≤ r ≤ 1

R̊(r) =

(
9

2

)1/3

r (t̊ + ζrp)2/3.

For 0 ≤ r ≤ 1 the blow up time is given by

t0(r) = t̊ + ζrp,

and the time tH(r) when a trapped surface forms is given by

tH(r) = t̊ + ζrp − 4

3
r3.
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Black hole (ζ < ζcrit ≈ 6.3)
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Naked singularity (ζ > ζcrit ≈ 6.3)
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Homogeneous solutions

It turns out to be possible to construct spatially homogeneous
solutions of the EV system in co-moving coordinates. Of course,
these violate the boundary conditions at infinity, and the idea is
that they are cut-off along some suitable curve.

The homogeneous solutions have j = 0 but the radial pressure p
and the tangential pressure pT are non-zero.

These solutions are useful to understand the mechanism which
makes dust and Vlasov behave very differently close to the blow up.
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The energy density

The energy density takes the following form in the case of Vlasov
matter:

ρ(t, r) =
π

R2

∫ ∞
−∞

∫ ∞
0

√
1 + w2 +

L

R2
f (t, r ,w , L) dL dw .

Initially we start from initial data which are dust-like in the sense
that the support of the momenta w and L is very small.

The closer to the blow up time we get the larger the momenta will
become; only if a particle has zero momentum initially it will
continue to be zero.

Hence, the kinetic energy of the particles will eventually give an
essential contribution to the energy density.
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Main mechanism

The density ρEV of the homogeneous Einstein-Vlasov solution
turns out to take the form

ρEV (t) =
1

γ̃3(t)

∫ 1

0

√
1 +

εη

γ̃2(t)
G (η) dη,

where G is such that ρEV = ρD when ε = 0. Here ε << 1
measures how closely a solution approximates dust.

Recall that the density for a homogeneous dust solution evolves as

ρD(t) =
ρ̊D

γ3(t)
, where ρ̊D = constant. (γ(t) ≈ γ̃(t))

Clearly the character of ρD and ρEV becomes quite different when
γ̃2(t) ∼ ε, which eventually will be the case since γ̃(t)→ 0 as
t → t0. In fact ρEV >> ρD when γ̃(t) ∼ 0.
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Thank You Jena and Leipzig!
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