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Outline

Lecture I: A historical review of singularities in general
relativity; the maximally extended Schwarschild spacetime; the
singularity theorem by Penrose (Nobel prize 2020).

Lecture II: Cosmic censorship; a historical perspective; an
initial value formulation; the Einstein-Vlasov system; rigorous
black hole formation in the case of Vlasov matter.

Lecture III: A review of dust collapse; naked singularities in
the inhomogeneous case; approximate dust with Vlasov
matter with the hope of eliminating the naked singularities.
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Dark stars versus black holes

In Newtonian gravity the escape velocity ve for a particle of mass
m, on a surface of a spherically symmetric object with radius r and
mass M, is given by

GMm

r
=

mv2
e

2
.

This equation follows from energy conservation.

If the radius r is small, then ve has to be large. In particular, if

r := rS =
2GM

c2
(∼ 1 cm for our planet),

then the escape velocity ve = c , i.e. the speed of light.

Hence if r < rS then not even light can escape to infinity. Such a
star would be dark. This was discovered by John Michell already in
1783 and later Laplace included the concept in one of his books.

Håkan Andréasson



Dark stars versus black holes

As we will see, rS is the Schwarzschild radius which is obtained by
solving the Einstein equations! So, are dark stars black holes? No
they are not. No information carrying signals can be transmitted to
infinity from a black hole. For a dark star the situation is different.

For a dark star information can in fact be carried to infinity by a
chain process. Indeed, if a photon is emitted at the surface of the
star at radius r0, it can reach radius r1 determined by

−GM
r1

=
−GM
r0

+
c2

2
or equivelently

1

r1
=

1

r0
− 1

rS
.

If r0 < rS the photon does not reach infinity. However, another
photon can transfer the information from r1 to a radius r2 and after
n steps (n ≥ rS/r0) information has been transmitted to infinity.
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General relativity

The classical gravitational theory by Newton cannot easily be
modified to capture the theory of special relativity.

In November 1915, Einstein gave a talk at the Prussian Academy
of Science where he presented his General theory of relativity,
which is a theory for gravity.

Spacetime is a four dimensional manifold M equipped with a
Lorentzian metric gab, a, b = 0, 1, 2, 3.

The metric gab is determined through the Einstein field
equations (below c = G = 1)

Gab := Rab −
1

2
gabR + Λgab = 8πTab

In this talk we take the cosmological constant Λ = 0.
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The left hand side of Einstein’s equations

The Einstein equations look easy: Gab = 8πTab

However, the left hand side of the equations (”made of marble”)
written out in local coordinates is very complicated since

Gab := Rab −
1

2
gabR

where Rab = Rd
adb, and R = Ra

a , and

Rd
abc =

∂

∂xb
Γd
ac −

∂

∂xa
Γd
bc + Γe

acΓd
be − Γe

bcΓd
ae ,

where

Γc
ab =

1

2
g cd

(∂gbd
∂xa

+
∂gad
∂xb

− ∂gab
∂xd

)
.
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The right hand side of Gab = 8πTab

The right hand side (”made of wood”) is the energy momentum
tensor of the matter. We have to make a choice of matter model:

fluid matter models (dust, Euler, Navier-Stokes)

kinetic matter models (Vlasov or Boltzmann matter)

elastic matter models

field theoretical models (a scalar field, a Yang-Mills field,...)

Some models are used by astrophysicists and some are used due to
mathematical convenience.

In addition to the system Gab = 8πTab, equations for the evolution
of the matter must often be included. Later we will look in detail
about this point for the Einstein-Vlasov system.
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The Schwarzschild solution (1916)

Consider a spherically symmetric object with mass M and radius
R. For r > R there is vacuum and the Einstein equations can be
solved uniquely and explicitly by the Schwarzschild solution:

ds2 = −(1− 2M

r
)dt2 +

1

1− 2M
r

dr2 + r2(dθ2 + sin2 θdϕ2). (1)

Here and below we use geometrical units so that c = G = 1,
otherwise 2M/r → 2GM/c2r .

The object could have a time-dependent matter distribution but
the external spacetime is anyhow static* and given by (1). This
follows from Birkhoff’s theorem.

A consequence is that a spherical mass distribution cannot emit
gravitational waves. An axially symmetric mass distribution can on
the other hand emit gravitational waves.
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Black holes were disputed

The Schwarzschild solution is a vacuum solution. What happens
when matter is included?

Schwarzschild studied a static star of uniform density (an
incompressible fluid) in 1916 and concluded that 2M/R < 8/9 < 1
so that the ”singularity” is avoided.

Einstein studied a static star described by a compressible fluid and
concluded: ”The Schwarzschild singularity does not appear for the
reason that matter cannot be concentrated arbitrarily” (Ann.
Math. 1939).

Oppenheimer-Snyder studied spherically symmetric gravitational
collapse of dust (time dependent problem) in 1939 and concluded
that a singular spacetime is obtained and that an event horizon
forms.
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Kruskal-Szekeres coordinates

The Schwarzschild solution is singular for r = 2M and r = 0. The
latter is a true singularity in the sense that curvature invariants
blow up but this is not the case for r = 2M. Spacetime is perfectly
well behaved there. It is merely a coordinate singularity.

It took almost 50 years to understand this issue. In 1960 Kruskal
and Szekeres independently came up with a construction.

The Kruskal-Szekeres coordinates are defined by replacing t and r
in the Schwarzschild coordinates by a new timelike coordinate T
and a new spacelike coordinate X by

T =
( r

2M
− 1

)1/2
er/4M sinh

( t

4M

)
X =

( r

2M
− 1

)1/2
er/4M cosh

( t

4M

)
,

for r > 2M and −∞ < t <∞. The transformation for the region
r < 2M is similar.
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The maximally extended Schwarzschild metric

It follows that the (maximally extended) Schwarzschild metric
takes the form

ds2 =
32M3

r
e−r/2M(−dT 2 + dX 2) + r2(dθ2 + sin2 θdφ2),

where the range of T and X is given by

−∞ < X <∞
−∞ < T 2 − X 2 < 1,

and where r > 0 is implicitly given as the unique solution to the
equation

T 2 − X 2 =
(
1− r

2M

)
er/2M .
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The event horizon, given by r = 2M in Schwarzschild coordinates,
is here given by T 2 − X 2 = 0 where the metric is non-singular and
well defined.

There are two singularities at r = 0, corresponding to
T 2 − X 2 = 1, one for positive T and one for negative T . The
former is the singularity of a black hole and the latter is the
singularity of a white hole.

The maximally extended solution is typically divided into four
regions where regions I and III are the exterior and the parallel
exterior regions respectively, and regions I and IV are the interior
black hole region and interior white hole region.
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The four regions of the maximally extended solution

Figure: Here 2M = 1. The event horizons are the dotted 45◦ lines and
the singularities are the hyperbolas at the top and bottom. (Picture by
Dr Greg)
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Penrose-Carter diagrams

Often so called light-cone coordinates are used instead, i.e.

Ũ = T − X

Ṽ = T + X ,

and moreover it is common to compactify spacetime by the
transformation

U = arctan Ũ

V = arctan Ṽ .

This results in so called Penrose-Carter diagrams which are
frequently used to depict different spacetimes.
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Compactified coordinates for the Schwarzschild spacetime

The boundaries have names:

U = π/2 and V = π/2 are called future null infinity, denoted
by I+ (”scri plus”). Analogous for I− (”scri minus”).
Spacelike infinity is denoted by i0 and are the points where
I+ and I− meet.
Future timelike infinity is denoted by i+ and are the points
(U,V ) = (0, π/2) and (U,V ) = (π/2, 0). Analogous for i−.
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Penrose-Carter diagram for the Schwarzschild spacetime
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Penrose diagram for the Reissner-Nordström spacetime
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The Einstein-Rosen bridge/wormhole

Figure: Embedding diagram for the spacelike surface t = 0. (One
dimension supressed.)

The Schwarzschild spacetime is static for external observers and it
is called an eternal black hole spacetime. The picture above
indicates that one should be able to travel between the two
exterior regions (universes).
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Wormholes and exotic matter

However, the black hole region II is dynamic (since t → t + ∆t is a
spacelike motion and not a timelike motion). When the spacelike
surface t = 0 is pushed forward in time it enters region II and its
geometry changes. A careful analysis shows that no particle can
travel between region I and III.

In the literature there are many attempts to obtain a stable
wormhole solution. However, these attempts require ”exotic
matter”.

A general comment about this is that if you are allowed to have
”any” matter then you can find any solution by simply choose a
metric and define the energy momentum tensor by the Einstein
equations.
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What is realistic in these diagrams?

The wormhole is an example of a property which is likely not
realistic in nature.

We believe that black holes have formed from a non-singular mass
distribution rather than being eternal as the Schwarzschild
spacetime.

If we use a Penrose diagram to depict the gravitational collapse of
a star then the regions III and IV in fact disappear and only regions
I and II remain.
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Penrose diagram of gravitational collapse of a star
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Nobel prize 2020

What is realistic in the Schwarzschild solution and in the
Oppenheimer-Snyder dust collapse?

Could the singularity and the event horizon be a result of the
assumption of (perfect) spherical symmetry?

The Nobel prize in physics 2020 was awarded to Roger Penrose for
his celebrated singularity theorem from 1965 which (partially)
answers this question.

Nobel prize motivation: ”For the discovery that black hole
formation is a robust prediction of the general theory of relativity”.
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The Penrose singularity theorem

Penrose shows in his singularity theorem that any spacetime
(spherically symmetric or not) which satisfies some rather general
conditions contains a singularity.

Definition: A spacetime is singular if it possesses at least one
incomplete geodesic.

A ”not satisfying example”: A spacetime with a conical singularity
is singular although the Riemann curvature tensor vanishes
everywhere away from the singularity.

Penrose wanted to understand the nature of the singularity. Is it a
black hole or not, i.e., is the singularity clothed by an event horizon
and is curvature blowing up at the singularity? This wish led him
to propose the cosmic censorship conjecture (1969) that we will
discuss later.
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Conditions in the singularity theorem

There are several versions of singularity theorems with various
assumptions. The Penrose singularity theorem from 1965 requires:

A condition on the curvature: Rabk
akb ≥ 0 for all null

geodesics ka.
A causality condition: spacetime is globally hyperbolic.
(Most importantly:) That spacetime contains a trapped
surface T .

The first condition follows from the strong energy condition for
matter.

A spacetime M is globally hyperbolic if it contains a spacelike
surface Σ such that D(Σ) = M, i.e., Σ is a Cauchy surface. (PDE
connection.)

A trapped surface T is a two dimensional spacelike surface with
the property that the expansion of both sets (”ingoing” and
”outgoing”) of future directed null geodesics orthogonal to T is
everywhere negative.

Håkan Andréasson



Formation of a trapped surface

If the assumption about a trapped surface should make sense we
have to ask if it is possible to start from initial data without a
trapped surface and show that a trapped surface forms in the
evolution. Let me mention a few situations where this is the case.

It is known for dust (1939) and for the spherically symmetric
Einstein-Vlasov system (2010). We will get back to this later.

Demetrios Christodoulou showed formation of a trapped
surface for the vacuum Einstein equations in a groundbreaking
work (600 pages) from 2009.

Concerning the latter work let me cite Piotr Chrusciel in his
Mathematical Reviews: ”In spite of the above reservations, most
likely originating in this reviewer’s ignorance, this is a visionary
proof, of terrifying complexity, which opens new avenues in our
understanding of mathematics of the Einstein equations.”

Christodoulou was awarded the Shaw prize for his result.
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A trrapped surface implies a black hole - sometimes

If your Einstein-matter system satisfies some conditions then a
black hole will result if there is a trapped surface.

In spherical symmetry the conditions are satisfied for the
Einstein-Vlasov system (Dafermos-Rendall 2005). This is the case
for the spherically symmetric Einstein-Vlasov system.

However, this is not generally true; if the singularity is not a black
hole singularity (i.e., clothed by an event horizon) it is called a
naked singularity. This leads us to the weak cosmic censorship
conjecture.

Håkan Andréasson


