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Hydrodynamics

Hydrodynamics gives insight into long-wavelength and late-time
behaviour of a medium, e.g. sound modes.

The hydrodynamic equations are conservation equations.
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The World of Hydrodynamics
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Hydrodynamics in QFT

Relativistic hydrodynamics effectively describes small momentum
and small frequency fluctuations in QFT with finite temperature.

Conservation equations

∂µ ⟨Tµν⟩ = 0, ∂µ ⟨Jµ⟩ = 0.

One point functions of symmetry currents are expressed as
derivative expansions, e.g.1

⟨Tµν⟩ = εuµuν+p∆µν−η∆µα∆νβ

(
∂αuβ + ∂βuα − 2

d
ηαβ∂ρu

ρ

)
+O(∂2).

1Here we have assumed conformal invariance.
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Derivative Expansion

Ideal part:

⟨Tµν⟩ = εuµuν+p∆µν−η∆µα∆νβ

(
∂αuβ + ∂βuα − 2

d
ηαβ∂ρu

ρ

)
+O(∂2),

where

• uµ(t, x⃗): velocity of the fluid
• ε(T, µ): energy density
• p(T, µ): pressure
• η(T, µ): shear viscocity

and ∆µν = ηµν + uµuν is a projector.

Thermodynamics enters through the equation of state for p(T, µ).
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Derivative Expansion

Viscous part:

⟨Tµν⟩ = εuµuν+p∆µν−η∆µα∆νβ

(
∂αuβ + ∂βuα − 2

d
ηαβ∂ρu

ρ

)
+O(∂2),

where

• uµ(t, x⃗): velocity of the fluid
• ε(T, µ): energy density
• p(T, µ): pressure
• η(T, µ): shear viscocity

and ∆µν = ηµν + uµuν is a projector.

Determines fluid response to perturbation.
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Derivative Expansion

Truncation:

⟨Tµν⟩ = εuµuν+p∆µν−η∆µα∆νβ

(
∂αuβ + ∂βuα − 2

d
ηαβ∂ρu

ρ

)
+O(∂2),

where

• uµ(t, x⃗): velocity of the fluid
• ε(T, µ): energy density
• p(T, µ): pressure
• η(T, µ): shear viscocity

and ∆µν = ηµν + uµuν is a projector.

Terms beyond one derivative not completely constructed
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Constraints on Derivative Expansion

Form of derivative expansion is constrained by

• Equations of motion
• Frame choice
• Onsager relations
• Positivity of local entropy production

Finding consistent derivative expansions is very challenging – terms
can be, and have been, overlooked.

Holographic techniques discovered new transport phenomena, i.e.
the chiral magnetic and vortical effects. [Erdmenger, Haack, Kaminski, Yarom; ’08],
[Benerjee et. al; ’08] [Son, Surowka; ’09], [Landsteiner, Megias, Melgar, Pena-Benitez; ’11], [Gooth et.
al; ’17]
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Symmetries

Symmetries are often idealisations – the real world breaks them!

Explicit symmetry breaking:

• Global symmetry of QFT broken by external effects
• Corresponding symmetry current no longer conserved
• Beyond the regime of hydrodynamics2

Spontaneous symmetry breaking (SSB):
Ground state of QFT no longer invariant under global symmetry.

2If the source of explicit breaking is small enough, hydrodynamics can still be applied
(with modification)
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Spontaneous Symmetry Breaking: a Simple Example

SSB of continuous global symmetry:

• Vacuum state lives in ‘sombrero’ potential V ((ϕ∗ϕ)2)

• New massless degrees of freedom: Goldstone bosons
• Symmetry currents still conserved; hence suitable for
hydrodynamics.
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SSB of Translational Invariance

Consider breaking of spatial translational invariance.

Why?
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SSB of Translational Invariance: Motivation

[Delacrétaz, Goutéraux, Hartnoll, Karlsson; ’16], [Keimer, Kivelson, Norman, Uchida, Zaanen; ’15]

Shift and broadening of peaks in optical conductivity of ‘strange
metals’ potentially explained using hydrodynamics with pseudo-SSB
of translations. [Delacrétaz, Goutéraux, Hartnoll, Karlsson; ’16]
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SSB of Translational Invariance: Motivation

[Keimer, Kivelson, Norman, Uchida, Zaanen; ’15]

Strange metals believed to arise from quantum critical point (QCP).

Pseudo-SSB may be imprint of symmetry breaking of QCP, which
could also affect other phases.
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SSB of Translational Invariance: Motivation

In QFT:

[Zippelius, Halperin, Nelson; ’80], [Chaikin, Lubenski; ’95], ..., [Delacrétaz, Goutéraux, Hartnoll,
Karlsson; ’16, ’17], [Davison, Delacrétaz, Goutéraux, Hartnoll; ’16]...

Can holography shed light on these questions?

[Alberte, Ammon, Baggioli, Jimenéz-Alba; ’17, ’17], [Ammon, Baggioli, SG, Grieninger, (Jain); ’19, (’20)],

[Amoretti, Areán, Goutéraux, Musso; ’17, ’17, ’18, ’19, ’19],

[Donos, Martin, Pantelidou, Ziogas; ’19, ’19, ’19], [Armas, Jain; ’19, ’20]...

A first step is to study pure spontaneous symmetry breaking...
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SSB of Translational Invariance: Goldstone Mode

Consider spontaneous breaking of spatial translational invariance in
a (2 + 1)-dimensional QFT.

Goldstone bosons associated with this spontaneous breaking are the
phonons

Φ =

(
Φx

Φy

)
.

Since the phonons are massless fields, they will contribute to the
hydrodynamics.
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Phonon Contribution: Derivative Expansion

Derivative expansion of spatial components of conserved current
becomes3

⟨Tij⟩ = δij
[
p− (B +G)∂ · ⟨Φ⟩

]
− 2G

[
∂(i ⟨Φj)⟩ − δij∂ · ⟨Φ⟩

]
− ησij +O(∂2),

where ∂ · ⟨Φ⟩ is the divergence of the expectation value of Φ.

3We have chosen a frame where uµ = (1, 0, 0).
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Phonon Contribution: Derivative Expansion

Derivative expansion of spatial components of conserved current
becomes3

⟨Tij⟩ = δij
[
p− (B +G)∂ · ⟨Φ⟩

]
− 2G

[
∂(i ⟨Φj)⟩ − δij∂ · ⟨Φ⟩

]
− ησij +O(∂2),

where ∂ · ⟨Φ⟩ is the divergence of the expectation value of Φ.

Terms which appeared without spontaneous breaking; ησij(t, x⃗) is
the viscous contribution.

3We have chosen a frame where uµ = (1, 0, 0).
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Phonon Contribution: Derivative Expansion

Derivative expansion of spatial components of conserved current
becomes3

⟨Tij⟩ = δij
[
p− (B +G)∂ · ⟨Φ⟩

]
− 2G

[
∂(i ⟨Φj)⟩ − δij∂ · ⟨Φ⟩

]
− ησij +O(∂2),

where ∂ · ⟨Φ⟩ is the divergence of the expectation value of Φ.

Additional contributions due to presence of Goldstone bosons Φi.

New coefficients:

• G(T, µ): shear elastic modulus
• B(T, µ): bulk elastic modulus

3We have chosen a frame where uµ = (1, 0, 0).
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Derivative Expansion: Configuration Pressure

New derivative expansion of spatial components of conserved
current becomes3

⟨Tij⟩ = (p+ P)δij + (∂T p+ ∂TP)δijT + (P −B +G) δij∂ · ⟨Φ⟩
− 2G∂(i ⟨Φj)⟩ − ησij +O(∂2)

where ∂ · ⟨Φ⟩ is the divergence of the expectation value of Φ.

Previously overlooked terms: Configuration pressure P(T, µ, . . . ), and
∂TP .

Configuration pressure accounts for a strained equilibrium state.
[Armas, Jain; ’19]

P and ∂TP also enter in other components of Tµν .

3We have chosen a frame where uµ = (1, 0, 0).
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Phonon Contribution: Josephson Relation

Additional equations for phonons: ‘Josephson relation’,

∂t ⟨Φi⟩ = ui.

Derivation:

• Hamiltonian density at finite velocity: H = H0 + uiT 0
i

• From Goldstone theorem: [Φi(x), T
0
j (y)] = iδijδ(x− y) + . . .

• Hence ∂t ⟨Φi⟩ = i ⟨[Φi, Ĥ]⟩ = . . . = ui.

As a consequence ∂µ ⟨Φi⟩ is zeroth order in derivatives.
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Phonon Contribution: Josephson Relation

Derivative expansion of Josephson relation

∂t ⟨Φi⟩ = ui −
1

σ
P∂2

t ⟨Φi⟩ −
1

σ
∂TP∂iT − 1

σ
(P −B +G) ∂i∂ · ⟨Φ⟩

+
2G

σ
∂j∂(iΦj) +O(∂2),

where σ is a coefficient which relates to Goldstone diffusion.

Note: Contributions due to configuration pressure.
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Hydrodynamic Modes

Without loss of generality we set the momentum in x-direction, and
choose spacetime-dependence e−iωt+ikx.

The hydrodynamic equations decompose into two sectors,
transverse and parallel to momentum.

Solving set of equations in frequency space leads to hydrodynamic
modes:

MV⃗ = 0, and det(M)
!
= 0.
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Modes of Longitudinal Sector I

Longitudinal sector
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Modes of Longitudinal Sector I

[Armas, Jain; ’19]

1. Pair of sound modes with dispersion relation

ω = ±v∥k − i

2
Γ∥k

2,

and coefficients

• Speed of longitudinal sound:

v2∥ =
1

2
+

G

χππ
,

• Diffusion constant:

Γ∥ =
η

χππ
+

T 2s2G2

σχ3
ππv

2
∥
,

where χππ is the momentum susceptibility, which relates velocity to
momentum via T 0

i = χππui.
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Modes of Longitudinal Sector II

[Armas, Jain; ’19]

2. Diffusive mode with dispersion relation

ω = −iD∥k
2,

and diffusion constant

D∥ =
s2

σs′
B +G− P
χππ/2 +G

.

In conformal theories the configuration pressure explicitly enters in
the diffusive mode!

Special case: P = 0 in equilibrium, but ∂TP ≠ 0

D∥ =
Ts2/σ

s+ ∂TP
B +G

Ts+ 2G
.

[Ammon, Baggioli, SG, Grieninger, Jain; ’20]
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Holographic Duality

Conjectured duality between (d+ 1)-dimensional gravitational
theories in asymptotically Anti-de Sitter (AdS) spacetimes and
d-dimensional QFTs living on flat conformal boundary.

When QFT is strongly coupled, dual gravity description is weakly
coupled; and vice-versa.

Holography provides tool-set to study strongly coupled quantum
phenomena.
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Levels of Holography

Simplest case:

Pure AdS⇐⇒ Vacuum state of QFT in flat-space.
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Levels of Holography

Finite temperature:

Black brane in asymptotic AdS⇐⇒ QFT at finite temperature.
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Levels of Holography

Dynamics at finite temperature:

Pertubations of black brane (QNMs)⇐⇒ Poles of Green’s functions.

Poles of retarded Green’s functions are frequency modes of QFT.
Modes with zero frequency in limit of zero momentum correspond to
hydrodynamic modes!
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Hydrodynamic Coefficients

Hydrodynamic transport coefficients are given by limits of retarded
Green’s functions, for example

η = − lim
ω→0

1

ω
lim
k→0

Im
[
GR
TxyTxy

(ω, k)
]
,

G = − lim
ω→0

lim
k→0

Re
[
GR
TxyTxy

(ω, k)
]
.

Holography provides methods for calculating such coefficients using
correlation functions of dual quantities in the gravitational theory.
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Translational Breaking in Holography: Our Model

Construct gravity model such that dual QFT has desired properties.

S =

∫
d4x

√
−g

[
R

2
+

3

ℓ2
−m2 V (X)

]
,

where R is the Ricci scalar; ℓ is the radius of curvature of AdS; and

X =
1

2
gµν∂µϕ

I∂νϕ
I ,

with scalar field ϕI = αxI . The geometry is given by

ds2 =
ℓ

u2

[
du2

f(u)
− f(u)dt2 + dx2 + dy2

]
,

where u ∈ [0, uh], with u = 0 at the conformal boundary, and
f(uh) = 0.

Gives spacetime of Schwarzschild black brane in asymptotic AdS,
with massive graviton.
[Andrade, Withers; ’13], ..., [Alberte, Ammon, Jiménez-Alba, Baggioli, Pujolas; JHEP ’17]
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Translational Breaking in Holography: Choice of Potentials

Consider two different potentials such that the dual QFTs display SSB
of translations:

• ‘Strained’ models with

V (X) = XN with N > 5/2,

which do not minimise the free energy→ P ≠ 0.

• ‘Unstrained’ model with

V (X) = X +
1

2
X2,

which minimises the free energy→ P = 0 (but: ∂TP ̸= 0).
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Method

1. Compute (numerically) QNMs of gravity theory
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Method

2. Identify hydrodynamic modes
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Method

3. Extract coefficients
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Method

4. Compare QNM results to hydrodynamic formulae
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Results: Strained Models

Longitudinal sector:

Strained models

V (X) = XN
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Results: Strained Models (Sound Attenuation)

[Ammon, Baggioli, SG, Grieninger, Jain; ’20]

Propagating mode of longitudinal sector:

ω = ±cLk − i

2
Γ∥k

2

0.5 1.0 1.5 2.0 2.5 3.0
m/T

0.025

0.030

0.035

0.040

Γ||T

N = 3, 4, 5

Plotted as a function of dimensionless SSB scale m/T .
30



Results: Strained Models (Diffusive Mode)

[Ammon, Baggioli, SG, Grieninger, Jain; ’20]

Diffusive mode of longitudinal sector

ω = −iD∥k
2
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Left: Comparison to hydrodynamics including P , N = 3, 4, 5.
Right: Discrepancy between QNMs and hydrodynamics without P ,
N = 5. [Ammon, Baggioli, SG, Grieninger; ’19]
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Results: Unstrained Model

Longitudinal Sector:

Unstrained model

V (X) = X +
1

2
X2
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Results: Unstrained Model

[Ammon, Baggioli, SG, Grieninger, Jain; ’20]

correct hydrodynamics

hydrodynamics without P'

numerical data (QNMs)
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Matching to hydrodynamics requires ∂TP ̸= 0 even when P = 0 (left).

Model is dynamically unstable; imaginary speed of sound (right), and
negative diffusion constant for large m/T .

Other holographic models with P = 0 have similar issues. Why?
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Conclusion and Outlook

Hydrodynamics is interesting!
Symmetry breaking is hard!
Holography provides novel approach!

Future directions:

• Find stable unstrained models
• Fluid/Gravity approach to derivative expansion
• Investigate pseudo-spontaneous symmetry breaking
from first-principles

• Move on with our lives
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Thank you for your attention!
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