A New Phase Transition

and Chiral Symmetry in 1+2D Thirring Models

PRD96 (9) 2017; PRD100 (5) 2019

Julian J. Lenz

with

D. Schmidt, B. Wellegehausen, A. Wipf

Theoretisch-Physikalisches Institut, FSU Jena

Kick-Off Meeting RTG 2522, 25./26.02.2020

1 Introduction

- 2 Absence Of Chiral Symmetry Breaking
- 3 The New Transition
- 4 Conclusion

Introduction

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

Solid state physics

Asymp. free/save

QCD toy model

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

Four-Fermion Theories

$$\mathcal{L} = \sum_{a=1}^{N_{f}} \overline{\psi}_{a} \left(\mathrm{i} \partial - \mathrm{i} m \right) \psi_{a} - \frac{1}{4\lambda} \sum_{a,b=1}^{N_{f}} \left(\overline{\psi}_{a} M_{1} \psi_{a} \right) \left(\overline{\psi}_{b} M_{2} \psi_{b} \right)$$

with

 $\psi, \overline{\psi}$ spinors, *m* mass, λ (inverse) coupling,

a flavour index, N_f number of flavours M_1, M_2 matrices

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

Four-Fermion Theories

$$\mathcal{L} = \sum_{a=1}^{N_{f}} \overline{\psi}_{a} \left(\mathrm{i}\partial - \mathrm{i}m \right) \psi_{a} - \frac{1}{4\lambda} \sum_{a,b=1}^{N_{f}} \left(\overline{\psi}_{a} M_{1} \psi_{a} \right) \left(\overline{\psi}_{b} M_{2} \psi_{b} \right)$$

with

 $\psi, \overline{\psi}$ spinors, m mass, λ (inverse) coupling, a flavour index, N_f number of flavours M_1, M_2 matrices

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

$\overline{\text{Chiral Symmetry U}(N_{f})}$

Observation

Chirality does not exist in odd space-time dimensions.

Chiral Symmetry $U(N_f)$

Observation

Chirality does not exist in odd space-time dimensions.

<u>But:</u> In reducible representation (4-comp. spinors) we have γ_5 to define

$$\psi_{a} \mapsto \left(e^{i\gamma_{5}\alpha} \right)_{ab} \psi_{b}, \qquad \bar{\psi}_{a} \mapsto \left(e^{i\gamma_{5}\alpha} \right)_{ab} \bar{\psi}_{b}.$$

$\overline{\text{Chiral Symmetry U}(N_{f})}$

Observation

Chirality does not exist in odd space-time dimensions.

<u>But:</u> In reducible representation (4-comp. spinors) we have γ_5 to define

$$\psi_{a} \mapsto \left(e^{i\gamma_{5}\alpha} \right)_{ab} \psi_{b}, \qquad \bar{\psi}_{a} \mapsto \left(e^{i\gamma_{5}\alpha} \right)_{ab} \bar{\psi}_{b}.$$

Order parameter

$$\Sigma = \left\langle ar{\psi}\psi \right
angle
eq 0$$

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

Absence Of Chiral Symmetry Breaking

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

What to expect?

What to expect?

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

The (Putative) Continuum PD

The (Putative) Continuum PD

PD=Phase Diagram, LAP=Lattice Artifact Phase, χ SB=Chiral Symmetry Breaking

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

Overview (16×15^2)

UNIVERSITÄT

JENA

8/13

The New Transition

But...

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

But...

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

But...

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

But...

The Answer is...

... a new second order phase transition not related to chiral symmetry.

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

The Resolution

The Resolution

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

The New Phase Diagram

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

Conclusion

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

Conclusions and Outlook

Conclusion: There is ...

- no chiral symmetry breaking in 1+2D Thirring models (with $N_f \in \mathbb{N}$).
- a new phase transition not related to order parameters we know of.

Conclusions and Outlook

Conclusion: There is ...

- no chiral symmetry breaking in 1+2D Thirring models (with $N_f \in \mathbb{N}$).
- a new phase transition not related to order parameters we know of.

Outlook:

- Detailed FSS analysis
- Nature of the new phase
- Order parameter (?)
- Critical exponents

Appendix

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

Mass Dependence

Spectral Density

Maximal Condensate

Maximal Condensate

A New Phase Transition and Chiral Symmetry in 1+2D Thirring Model Julian Lenz

Susceptibility Scaling

$$Z = \int \mathscr{D}\overline{\psi} \mathscr{D}\psi \ e^{-\int \mathcal{L}} = C \sum_{\{k\}} w_{\lambda}(k) \det D[\{k\}] = \int d\Sigma \ e^{-U(\Sigma)}$$
• free dynamics
• interaction sites
• of the second sec

$$Z = \int \mathscr{D}\overline{\psi} \mathscr{D}\psi \ e^{-\int \mathcal{L}} = C \sum_{\{k\}} w_{\lambda}(k) \det D[\{k\}] = \int d\Sigma \ e^{-U(\Sigma)}$$

- free dynamics
- interaction sites
- Pauli: exclude interaction sites

$$Z = \int \mathscr{D}\overline{\psi} \mathscr{D}\psi \ e^{-\int \mathcal{L}} = C \sum_{\{k\}} w_{\lambda}(k) \det D[\{k\}] = \int d\Sigma \ e^{-U(\Sigma)}$$

- free dynamics
- interaction sites
- Pauli: exclude interaction sites
- one coupling per interaction

The (Euclidean) Partition Function

$$Z = \int \mathscr{D}\overline{\psi} \mathscr{D}\psi \ e^{-\int \mathcal{L}} = C \sum_{\{k\}} w_{\lambda}(k) \det D[\{k\}] = \int d\Sigma \ e^{-U(\Sigma)}$$

- interaction sites
- Pauli: exclude interaction sites
- one coupling per interaction

The effective potential $U(\Sigma)$...

... can be calculated from expectation values measurable on the lattice.

The Effective Potential (16×15^2)

The Effective Potential (16×15^2)

The Effective Potential (16×15^2)

Conclusion:

No chiral symmetry breaking in red. 1+2D Thirring models (with $N_f \in \mathbb{N}$).

Continuum Limit

Continuum Limit

