# Transmission Amplitude through a Coulombblockaded Majorana Wire 

RTG 2522 Kickoff 2020

Matthias Thamm
Universität Leipzig

Collaborator: Bernd Rosenow

## Outline

- Majorana zero modes
- Aharonov-Bohm interferometer setup
- Scattering matrix description of Majorana wires
- Transmission amplitude


## Majorana fermions

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

- Are there real solutions of the Dirac equation?
- Yes, if the particle is its own anti-particle

$$
\gamma=\gamma^{\dagger}
$$

- Neutral fermion
- In this talk: emergent quasi-particles, zero energy bound states



## Majorana zero modes

- Usual fermions

$$
\left[H, c^{\dagger}\right]=E c^{\dagger}, \quad[H, c]=-E c
$$

- Majorana fermions

$$
\left[H, \gamma^{\dagger}\right]=[H, \gamma] \Rightarrow E=0
$$

- Charge neutral fermion: equal superposition of particle and hole
- Quasi-particles in superconductors $\gamma_{E}^{\dagger}=\gamma_{-E} \Rightarrow E=0$
- S-wave superconductor $\gamma^{\dagger}=u c_{\uparrow}^{\dagger}+v c_{\downarrow} \neq \gamma$
- Look for spin-less superconductor: p-wave pairing symmetry

$$
\gamma=u c^{\dagger}+v c \Rightarrow \gamma^{\dagger}=\gamma \quad \text { for } \quad v=u^{*}
$$

## Kitaev model

$$
H_{K}=-\sum_{i=1}^{N}\left(t_{0} c_{i}^{\dagger} c_{i+1}+\Delta_{0} c_{i}^{\dagger} c_{i+1}^{\dagger}+\text { h.c. }\right)-\mu_{0} \sum_{i=1}^{N} c_{i}^{\dagger} c_{i}
$$




- Introduce Majorana fermions $\quad \gamma_{\mathrm{A}, j}=c_{j}^{\dagger}+c_{j}, \quad \gamma_{\mathrm{B}, j}=\left(c_{j}^{\dagger}-c_{j}\right) / i$
- Fermion number

$$
\begin{aligned}
& i \gamma_{\mathrm{A}, j} \gamma_{\mathrm{B}, j}=1-2 c_{j}^{\dagger} c_{j} \\
& -\mu_{0} \sum_{j=1}^{N} c_{j}^{\dagger} c_{j}=\frac{1}{2} \mu_{0} \sum_{j=1}^{N} i \gamma_{\mathrm{A}, j} \gamma_{\mathrm{B}, j}-\frac{\mu_{0} N}{2}
\end{aligned}
$$

## Kitaev model - trivial phase

- Consider limit $t_{0}=0=\Delta_{0}$


Majorana operators at the same lattice site are coupled by the Hamiltonian

- Introduce Majorana fermions

$$
\gamma_{\mathrm{A}, j}=c_{j}^{\dagger}+c_{j}, \quad \gamma_{\mathrm{B}, j}=\left(c_{j}^{\dagger}-c_{j}\right) / i
$$

- Fermion number

$$
\begin{aligned}
& i \gamma_{\mathrm{A}, j} \gamma_{\mathrm{B}, j}=1-2 c_{j}^{\dagger} c_{j} \\
& -\mu_{0} \sum_{j=1}^{N} c_{j}^{\dagger} c_{j}=\frac{1}{2} \mu_{0} \sum_{j=1}^{N} i \gamma_{\mathrm{A}, j} \gamma_{\mathrm{B}, j}-\frac{\mu_{0} N}{2}
\end{aligned}
$$

## Kitaev model - topological phase

- Consider limit $t_{0}=\Delta_{0}, \mu_{0}=0$

- Majorana operators at neighboring lattice sites are coupled by Hamiltonian
- End Majoranas $\gamma_{\mathrm{B}, 1}$ and $\gamma_{\mathrm{A}, N}$ are uncoupled: zero energy quasi-particles


## Ground state degeneracy described by operator $i \gamma_{\mathrm{B}, 1} \gamma_{\mathrm{A}, N}$

- Introduce Majorana fermions $\quad \gamma_{\mathrm{A}, j}=c_{j}^{\dagger}+c_{j}, \quad \gamma_{\mathrm{B}, j}=\left(c_{j}^{\dagger}-c_{j}\right) / i$
- Fermion number

$$
i \gamma_{\mathrm{A}, j} \gamma_{\mathrm{B}, j}=1-2 c_{j}^{\dagger} c_{j}
$$

$-\mu_{0} \sum_{j=1}^{N} c_{j}^{\dagger} c_{j}=\frac{1}{2} \mu_{0} \sum_{j=1}^{N} i \gamma_{\mathrm{A}, j} \gamma_{\mathrm{B}, j}-\frac{\mu_{0} N}{2}$

## Kitaev model - topological phase transition

$$
\mathcal{H}_{K}=\left(\begin{array}{cccc}
\varepsilon_{k} & 0 & 0 & \Delta_{0} \sin (k) \\
0 & \varepsilon_{-k} & -\Delta_{0} \sin (k) & 0 \\
0 & -\Delta_{0}^{*} \sin (k) & -\varepsilon_{k} & 0 \\
\Delta_{0}^{*} \sin (k) & 0 & 0 & -\varepsilon_{-k}
\end{array}\right) \quad \text { in basis } \quad\left(c_{k}^{\dagger}, c_{-k}^{\dagger}, c_{k}, c_{-k}\right)
$$

- Quasi-particle energies $E_{k}=\sqrt{\left(-2 t_{0} \cos (k)-\mu_{0}\right)^{2}+\left|\Delta_{0}\right|^{2} \sin ^{2}(k)}$
- Pairing term vanishes for $k=0, k=\pi \Rightarrow$ energy gap closes for $\mu_{0}= \pm 2 t_{0}$

- Topological phase transition at $\mu_{0}= \pm 2 t_{0}$
- We know the system is topological for $\mu_{0}=0$

Topological phase for $|\mu|<2 t_{0}$

## More realistic model - proximitized Rashba wire



$$
\mathcal{H}=\left[-\frac{\hbar^{2}}{2 m} \partial_{y}^{2}-\mu-i \alpha_{\mathrm{R}} \sigma_{x} \partial_{y}\right] \tau_{z}-E_{z} \sigma_{z}+\Delta \tau_{x}
$$



R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010);
Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)

## Zero bias conductance peak

- Tunneling conductance as function of gate voltage
- Zero-bias conductance peak at finite Zeeman field as Majorana signature


Zhang et al., Nature 556, 206 (2018)

## Tunneling in Coulomb blockade

- Semiconductor-superconductor heterostructure
- Coulomb blockade
- Conductance measurement as function of the gate voltage


conductance resonances


## Coulomb blockade

- Spatial confinement of electrons enhances Coulomb repulsion
- Charging energy $E_{\mathrm{ch}}=\frac{E_{c}}{2}\left[N_{0}-\frac{e V_{g}}{E_{c}}\right]^{2}$

- Conduction resonance at $E_{\text {ch }}\left(N_{0}\right)=E_{\text {ch }}\left(N_{0}+1\right)$
- Consider tunneling in between resonances

Coherent transport through Coulomb-blockaded Majorana wire


- Interferometer setup

- Transmission amplitude peak


## Aharonov-Bohm interferometer



- Rashba wire with s-wave superconductor in proximity
- Aharonov-Bohm interferometer to measure transmission amplitude and phase
- Transmission amplitude $\left|T_{\uparrow \uparrow}+T_{\downarrow \downarrow}\right|$ can be obtained from current oscillations $I(\Phi)$


## Scattering matrix

- Scattering matrix formalism

$$
S=1-2 \pi i W \frac{1}{\varepsilon-H_{\mathrm{eff}}+i \pi W^{\dagger} W} W^{\dagger}
$$

- In the Coulomb-blockade regime, Weidenmüller formula can be used with BdG wave functions
- Bogolubov - de Gennes Hamiltonian

$$
\mathcal{H}=\left(\begin{array}{cc}
H_{w} & \Delta \sigma_{0} \\
\Delta^{*} \sigma_{0} & -H_{w}
\end{array}\right)
$$

- Electron wave functions $u_{n \sigma}$ and hole wave functions $v_{n \sigma}$ satisfy the BdG equation

$$
\mathcal{H}\left(u_{n \uparrow}, u_{n \downarrow}, v_{n \downarrow},-v_{n \uparrow}\right)^{T}=\mathcal{E}_{n}\left(u_{n \uparrow}, u_{n \downarrow}, v_{n \downarrow},-v_{n \uparrow}\right)^{T}
$$

## Transmission through the wire - normal case

- Scattering matrix from Weidenmüller formula $S=1-2 \pi i W \frac{1}{\varepsilon-H_{\mathrm{eff}}+i \pi W^{\dagger} W} W^{\dagger}=\left(\begin{array}{ll}R_{\mathrm{RR}} & T_{\mathrm{LR}} \\ T_{\mathrm{RL}} & R_{\mathrm{LL}}\end{array}\right)$
- Approximation for single resonant level $\varepsilon_{n}$

$$
T \propto \frac{\varphi_{n}\left(y_{L}\right) \varphi_{n}^{*}\left(y_{R}\right)}{E_{c}}
$$


$y_{L}$
$y_{R}$
$-\varphi_{n}$ eigenfunction of resonant level
$-\Psi_{\alpha}$ lead wave function

## Transmission through the wire - Majorana case

- Majorana wave functions $\chi_{\alpha}$ exponentially localized at wire ends
- Coulomb blockade expels additional charges from the island
- BdG wave functions $\chi_{L} \pm \chi_{R} \Rightarrow T \propto \frac{\chi_{L}\left(y_{L}\right) \chi_{R}^{*}\left(y_{R}\right)}{E_{c}}$

$-u_{n} \quad$ BdG wave function of the MZMs
- $\Psi_{\alpha}$ lead wave function


## Transmission amplitude

- Vary Zeeman field and measure transmission amplitude
- Large transmission for large wave function weight at wire ends
- Maximum in amplitude when entering topological regime with localize Majorana wave function

$$
\chi_{L} \sim \frac{1}{\sqrt{\xi}} e^{-x / \xi} \text { depends on } \xi=v_{F} / \Delta_{\mathrm{ind}} \text { and hence } \Delta_{\mathrm{ind}}
$$

trivial



## Transmission amplitude

- Charging energy $E_{c} \propto L^{-1}$
- Distinguish Majorana from extended states by wire length dependence of transmission amplitude
extended state


$$
T \propto \frac{1}{\sqrt{L}} \frac{1}{\sqrt{L}} \frac{1}{E_{c}} \propto 1
$$

Majorana zero mode

$T \propto \frac{1}{\sqrt{\xi}} \frac{1}{\sqrt{\xi}} \frac{1}{E_{c}} \propto L$

# Transmission amplitude 

## Transmission amplitude - constant order parameter

- Transmission amplitude $\left|T_{\uparrow \uparrow}\left(V_{g, \text { mid }}\right)\right|$

- Maximum in amplitude when entering topological regime
- Maximum exclusively determined by MZMs, robust against considering more levels


## Transmission amplitude - self-consistent order parameter

- Order parameter

$\Delta\left(E_{z}\right)=\Delta(0)\left[1-\left(\frac{E_{z}}{E_{z, c}}\right)^{2}\right]^{1 / 2}$
$\Delta\left(4.5 E_{\mathrm{so}}\right)=2 E_{\mathrm{so}}, \quad E_{z, c}=10 E_{\mathrm{so}}$
- 200 levels
.... normal conducting
=-= fit $\bar{A}\left(E_{z}\right) \sim \Delta\left(E_{z}\right) / E_{z}$
- Amplitude decays when MZMs are destroyed


## Transmission amplitude - self-consistent order parameter

- Agrees with recent experiment: Whiticar et al., arXiv:1902.07085 (2019)




## Transmission amplitude - wire length dependence

- Wires of various lengths $L=13 l_{\mathrm{so}}, 19.5 l_{\mathrm{so}}, 26 l_{\mathrm{so}}, 32.5 l_{\mathrm{so}}, 39 l_{\mathrm{so}}, 45.5 l_{\mathrm{so}}$, and $58.5 l_{\mathrm{so}}$

- Amplitude maximum increases with $L$
- Amplitude in normal conducting region independent of $L$
- Other zero modes like Andreev bound states do not contribute for long wires

MT and Bernd Rosenow, in preparation

Mid-gap amplitude peak increasing with wire length due to non-locality of MZMs $\Rightarrow$ provides clear evidence for MZMs

## Conclusion

- Coherent transport through Coulomb blockaded wire hosting MZMs
- Can determine Majorana localization length via transmission amplitude measurement
- Transmission amplitude maximum, whose height is proportional to the wire length as unique signatures for the presence of Majorana zero modes

