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Gravity and quantum matter?

o General relativity = dynamical
space-time
o Curvature of space-time <= gravitation

o Matter curves space-time, curvature
determines motion of matter

e Quantum matter (quantum field theory)

e Visible matter content of universe
e Space-time acts as a fixed “stage”

e Opposing assumptions, but theories relevant at different scales?

What happens at smallest length scales?
Quantum matter on classical space-time inconsistent.

Quantum nature of gravity cannot be ignored!
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“Zooming in” to the Planck scale

o What is space-time at the Planck scale [p = @/Z—g?

e Bottom-up approach: ansatz for UV physics

e Use renormalization group as “microscope”

e “Zoom out” by relating theories at different scales

Replace space-time by a ‘“quantum space-time”.
One promising approach: spin foam quantum gravity J
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Path integral for gravity

(FSU Jena)

o Formal path integral of geometries
7 /D[g] e%SEH[g}

o Sgpn: Einstein-Hilbert action
o D[g]: Measure on space of geometries

o Regulator: Lattice

o Diffeomorphism symmetry?
o Continuum limit?
e Renormalizability?

Spin foam quantum gravity:

Background independent, non-perturbative
quantization of gravity
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Riemannian continuum gravity in 3D

e Reviews on spin foams and BF theory [Bacz '99, Perez '12]
e Compact, orientable 3D Riemannian manifold M

3D gravity described by (topological) SU(2) BF theory:

QRM:/;ﬁBAHM]

o B su(2) valued 1-form, F' curvature 2-form of connection w
o w connection on SU(2) principal bundle

Equations of motion:

Fw)=0 and d,B=0

Path integral:

zz/DmDMémﬂWWW“:/m@aﬂmf
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Triangulation and its dual complex

e Triangulation A (of M) and its dual A*
e VEA* & TEA
eec A" TeA
o fEA* & FeA
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Discretizing BF theory

o Discretize B-field:
o (d—2)-dim face f € A*

By ::/ B
1-cell

o B-field smeared over an edge

e — J T g

@ Discretize connection w:

o 1-dim edge e € A* ‘
ge := Pexp (— /w) “‘
o g. € SU(2): parallel transport along e “

Parallel transport to another tetrahedron J
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Discretized curvature and partition function

e Discretize curvature F'(w):
e Holonomy around closed loop f € A*:

—

Uf = Hecfge

e Matching orienation assumend

e Partition function:

Z(A) = / 11 dge [ dBse®Vr = / IT dee I 0 (ﬂecfge>

eEA* feA* eEA* feA*

Curvature measured around edges F € A.
Flatness imposed: closed holonomies must be equal to identity. J
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Toward the spin foam representation

o Peter-Weyl’s theorem: d(g) =>_,d; Tr[ D7 (g)]

o j € 5: labels irrep of SU(2)
o D .: Wigner-D matrix for irrep j

o Expand each J-function in Z:

o Irrep jy per face f € A
o Use DI(g192) = D7(g91)D?(g2)

Z/ [T doe TT ds, ™D (9e1) D7 (ges) - DI (g )

e€A* feA*

=30 1 | [ I 40 @ P00
fDe

Jjr feAx eEA*
PHaar({jf})
Ppaar: Haar-projector onto invariant subspace Inv(®), jr). J
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Towards spin networks
e 3D triangulation: e € A* is 3-valent

e Triangle is bound by 3 edges
e e € A* part of 3 faces f € A*

Phaar = /dg DI(g) ® DI72(g) ® DI (g) = (9) = X = [u)(

o Intertwiner ¢: normalized unique vector in Inv(j; ® j2 ® js)

%

1 Steinhaus (FSU Jena) Introduction to SF and RG February 26 2020 11 /29



Ponzano-Regge model

o Ingredients:
o Irrep js: length of edge E (dual to f)
o Intertwiner t.: “shape” of triangle (dual to e)

e Final form of partition function:

2= [l 4 11 o 11

jr fEA* eEA* vEA* 7

o Local assignment of amplitudes

e Vertex amplitude: evaluation of spin network function
o {67}-symbol: “quantum tetrahedron”

Sum over quantum geometric building blocks

Derived from (constrained) topological quantum field theory
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Properties of Ponzano-Regge model

o Triangulation independent
e Invariant under Pachner moves
‘ -~ o Discrete remnant of diffeomorphism
‘ symmetry [Freidel, Louapre "02]

o Turaev-Viro model: A > 0 [Turaev, Viro '92]
o Quantum deformed SU(2)x
d jmax =3
o A= grppa

o Asymptotic expansion of vertex amplitude

[Ponzano, Regge ’68]

e (5 9)
cos ( Sg + —
" |is ~ 127V 4
J3 J4
Sr: Regge / discrete gravity action for a single tetrahedron J
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Plebanski-Holst action

e 4D gravity as a constrained BF theory:

1 1
S[B,w,\] = / K*B” - B”) A Frj(w) + A\ryxr B A BEE
M gl

K

e A\iyxL = —AJIKL = —A1jLK = Akr1J Lagrange multipliers
o > B=+x(eANe)or B==xeAe
e 7: Immirzi parameter

e Compare to BF Yang-Mills:
Serva[B, 4] :/ Te(B A F(A)) +92/ Te(B A +B)
M M

BF theory corresponds to Yang-Mills theory in weak coupling limit

Understand spin foam models as generalized lattice gauge theories

Sebastian Steinhaus (FSU Jena) Introduction to SF and RG February 26 2020 15 /29



4D spin foam strategy

o As before, discretize and quantise SU(2) x SU(2) BF theory

o By associated to faces f € A* (dual to triangles)
o g. associated to edges e € A* (dual to tetrahedra)

L5

I

Zor) = Y TT i TL el IT

Jfite fEA* ecA* VEA*

L2 L3

o Interpretation of variables:

o js: area of triangle (dual to f)
o (.: shape of tetrahedron (dual to €)
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Different 4D spin foam models

o Implement simplicity constraints to break topological symmetry

o Restrictions on irreps (5%, j7) and intertwiners ¢

o Barrett-Crane model [Barrett, Crane '98]

e Simple bivector — j* = j~

(*] EPRL—FK mOdel [Engle, Pereira, Rovelli, Livine ’08, Freidel, Krasnov ’08]

o Weak imposition of constraints (in discrete):
1
4 .
=1+
T =5 11E00
o Contact with LQG Hilbert space (spin networks)

Simplicity constraints: restrictions on representations and intertwinersJ
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Spin foams: interpretation and results

e Amplitude functional A: H;, — C

e Hy: boundary Hilbert space on a
discretisation b

o Transition amplitude for H, = H; ® H;‘c

o (s|s)u=A(s®s")
e Evolution of 3D geometries

e Asymptotic expansion of vertex amplitude

[Conrady, Freidel ’08, Barrett, Dowdall, Fairbarn, Gomes, Hellmann

'09)

Ay ~ cos(Sr) + ...

o Implementation of Cosmological Constant
[Han ’11, Fairbarn, Meusburger '11, Haggard, Han, Kaminski, Riello

18]
At discrete level: relation to classical gravity

Can we go beyond a few simplices?
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Why we need renormalization

@ Definition not unique

e Lattice is a choice.

e Should the lattice be “fine” or “coarse”?
e Can we relate the physics on different lattices?
e Diffeomorphism symmetry? [Bahr, s.5t. '15]

VS. VS.

Physics must be independent of choice of regulator! J

e How do we bridge the enormous gap to observable physics?

e Do we recover general relativity in a suitable limit?
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Relating theories across discretisations

Wilsonian renormalization in absence of a scale

e No background geometry

Use the lattice itself as a relative scale

o “Fine” vs. “coarse” degrees of freedom

Coarse grain by summing over “fine” degrees of freedom

e E.g. decimation procedure
o Regge calculus for A # 0 in 3D (Banr, Dittrich *09]

Interactiong theories: non-local interactions arise

e Example: Ising model in 2D
e Difficult to iterate

Allow for more general boundary data

Complex building blocks that interact locally
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Consistent boundary formulation I e, sst. 14

@ Recall: amplitude functionals A, : H;, — C

e Simplest example: single simplex
o Different boundaries b, b’ — different H;, Hy

e How can we compare A;, and Aj},?

VS. VS.

o Idea: relate states in H; to states H
o Embedding maps: wpp, : Hy — Hy
o Boundaries partially ordered set b < &

Represent the same state on different Hilbert spaces

Hp > Yy = wwp(ts) € Hiy
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Consistent boundary formulation IT i, sse. 14

o Compare amplitude functionals
° .Ab : Hb — C

A 4 L L |
T o Al :Hy = C
| Ll o Renormalization group equation
A \
.Al = .AI/ L
JA b oy b(¥n) v (Lo ()
h \

~
g

A A/ A/ /

Assign different amplitudes to different lattices

Renormalization group flow of spin foam amplitudes
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Tensor network renormalization ievin, nave 07

o Partition function as tensor network

° % <> local amplitude

e Dynamical embedding map from tensors

e Singular value decomposition
e Local network

| ﬁ%w
-+

\/

Study flow of tensors under coarse graining J
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Results from Tensor networks

. o Numerical algorithm

o Works for oscillating amplitudes

14 e integer

o Finite dimensional Hilbert spaces

13 .

e 2D analogue models for SU(2)y ittrich,

half-integer
Martin-Benito, S.St. ’13, Cameron, Dittrich, Schnetter, S.St. ’16]
.................... - Lovel k

o 3D lattice gauge theories for Zo and S5 [pittricn,
Mizera, S.St. ’14, Delcamp, Dittrich ’16]
e e Fusion basis for 3D SU(2)y lattice gauge
theory [Dittrich, Geiller 16, Cunningham, Dittrich, S.St. ’20]
" e Phase transition: confining and deconfing
phase
o Critical g. drops as we increase k.
e Expectation values of Wilson loops

200 400 600 800 1000

Hint towards no deconfining phase for continuous group SU(2). |
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Results from 4D restricted spin foam models

e Complementary route: Study restricted path integral [sanr, s.st. '15, Bahr,

Kloser, Rabuffo ’17]

@ Proof of principle Banr, s.st. PRL 16]

(ave) e

014 iz ‘qj‘; o 4D restricted spin foam model

o / e o Several simplifications / assumptions

oosf \ . o Indication for a UV-attractive fixed point

o ﬁ and restored diffeomorphism symmetry
L .

e Diffusion process on space-time

e Spectral dimension Dg of restricted . oos
spin foam [s.st., Thiirigen 18] P ’ ’ 0556
e Dg < 4 due to superposition of ‘ : . aoess
geometries !
g o . e .
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Summary

e Spin foam quantisation strategy

e Discretisation and quantisation of topological BF theory
e Derivation of spin foam representation

e 4D spin foam models: simplicity constraint

e Quantum geometric building blocks

e Background independent renormalization

o Tackle open questions (diffeomorphism symmetry, discretisation
dependence,...)
o Assign a family of amplitudes across lattices

e Example: Tensor network renormalization

o Fusion basis for 3D lattice gauge theories

Promising results in this line of research

Intriguing open questions remains
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Outlook

e Renormalization
o Apply tensor networks (or simplified algorithms) to 4D spin foams
o Which other numerical methods useful (Monte Carlo)?
@ Numerical methods
e Develop algorithms to compute spin foam amplitudes
e Hybrid algorithm, using semi-classical results
e Matter and observables

e Couple matter to spin foams
e Renormalize both gravity and matter
o Geometric observables (spectral dimension, curvature)

Thank you for your attention!
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