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Gravity and quantum matter?

General relativity =⇒ dynamical
space-time

Curvature of space-time ⇐⇒ gravitation

Matter curves space-time, curvature
determines motion of matter

Quantum matter (quantum field theory)

Visible matter content of universe

Space-time acts as a fixed “stage”

Opposing assumptions, but theories relevant at different scales?

What happens at smallest length scales?

Quantum matter on classical space-time inconsistent.

Quantum nature of gravity cannot be ignored!
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“Zooming in” to the Planck scale

What is space-time at the Planck scale lP =
√

~G
c3

?

Bottom-up approach: ansatz for UV physics

Use renormalization group as “microscope”

“Zoom out” by relating theories at different scales

Replace space-time by a “quantum space-time”.

One promising approach: spin foam quantum gravity
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Path integral for gravity

Formal path integral of geometries

Z =

∫
D[g] e

i
~SEH[g]

SEH: Einstein-Hilbert action

D[g]: Measure on space of geometries

Regulator: Lattice

Diffeomorphism symmetry?

Continuum limit?

Renormalizability?

Spin foam quantum gravity:

Background independent, non-perturbative
quantization of gravity
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Riemannian continuum gravity in 3D

Reviews on spin foams and BF theory [Baez ’99, Perez ’12]

Compact, orientable 3D Riemannian manifold M
3D gravity described by (topological) SU(2) BF theory:

S[B,ω] =

∫
M

Tr[B ∧ F (ω)]

B su(2) valued 1-form, F curvature 2-form of connection ω

ω connection on SU(2) principal bundle

Equations of motion:

F (ω) = 0 and dωB = 0

Path integral:

Z =

∫
D[B]D[ω] ei

∫
M Tr[B∧F (ω)] “ =

∫
D[ω] δ(F (ω))”
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Triangulation and its dual complex

Triangulation ∆ (of M) and its dual ∆∗

v ∈ ∆∗ ↔ τ ∈ ∆

e ∈ ∆∗ ↔ T ∈ ∆

f ∈ ∆∗ ↔ E ∈ ∆
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Discretizing BF theory

Discretize B-field:

(d− 2)-dim face f ∈ ∆∗

Bf :=

∫
1-cell

B

B-field smeared over an edge

Edge vector

Discretize connection ω:

1-dim edge e ∈ ∆∗

ge := P exp

(
−
∫
e

ω

)
ge ∈ SU(2): parallel transport along e

Parallel transport to another tetrahedron
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Discretized curvature and partition function

Discretize curvature F (ω):

Holonomy around closed loop f ∈ ∆∗:

Uf :=
~∏

e⊂f
ge

Matching orienation assumend

Partition function:

Z(∆) =

∫ ∏
e∈∆∗

dge
∏
f∈∆∗

dBf e
iBfUf =

∫ ∏
e∈∆∗

dge
∏
f∈∆∗

δ

(
~∏
e⊂f

ge

)

Curvature measured around edges E ∈ ∆.

Flatness imposed: closed holonomies must be equal to identity.
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Toward the spin foam representation

Peter-Weyl’s theorem: δ(g) =
∑

j dj Tr[Dj(g)]

j ∈ N
2 : labels irrep of SU(2)

Dj
mn: Wigner-D matrix for irrep j

Expand each δ-function in Z:

Irrep jf per face f ∈ ∆∗

Use Dj(g1 g2) = Dj(g1)Dj(g2)

Z(∆) =
∑
jf

∫ ∏
e∈∆∗

dge
∏
f∈∆∗

djf Tr[Djf (ge1)Djf (ge2) . . . Djf (geN )]

=
∑
jf

∏
f∈∆∗

djf Tr

∫ ∏
e∈∆∗

dge
⊗
f⊃e

Djf (ge)


︸ ︷︷ ︸

PHaar({jf})

PHaar: Haar-projector onto invariant subspace Inv(
⊗

f jf ).
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Towards spin networks

3D triangulation: e ∈ ∆∗ is 3-valent
Triangle is bound by 3 edges
e ∈ ∆∗ part of 3 faces f ∈ ∆∗

PHaar =

∫
dg Djf1 (g)⊗Djf2 (g)⊗Djf3 (g) = = = |ι〉〈ι|

Intertwiner ι: normalized unique vector in Inv(j1 ⊗ j2 ⊗ j3)
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Ponzano-Regge model

Ingredients:

Irrep jf : length of edge E (dual to f)

Intertwiner ιe: “shape” of triangle (dual to e)

Final form of partition function:

Z(∆) =
∑
jf

∏
f∈∆∗

djf
∏
e∈∆∗

(−1)...
∏
v∈∆∗

Local assignment of amplitudes

Vertex amplitude: evaluation of spin network function

{6j}-symbol: “quantum tetrahedron”

Sum over quantum geometric building blocks

Derived from (constrained) topological quantum field theory
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Properties of Ponzano-Regge model

Triangulation independent

Invariant under Pachner moves

Discrete remnant of diffeomorphism
symmetry [Freidel, Louapre ’02]

Turaev-Viro model: Λ > 0 [Turaev, Viro ’92]

Quantum deformed SU(2)k
jmax = k

2

Λ = 1
G2~2k2

Asymptotic expansion of vertex amplitude
[Ponzano, Regge ’68]

∼ 1√
12πV

cos
(
SR +

π

4

)

SR: Regge / discrete gravity action for a single tetrahedron
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Plebanski-Holst action

4D gravity as a constrained BF theory:

S[B,ω, λ] =
1

κ

∫
M

[(
∗BIJ +

1

γ
BIJ

)
∧ FIJ(ω) + λIJKLB

IJ ∧BKL

]

λIJKL = −λJIKL = −λIJLK = λKLIJ Lagrange multipliers

→ B = ± ∗ (e ∧ e) or B = ±e ∧ e
γ: Immirzi parameter

Compare to BF Yang-Mills:

SBFYM[B,A] =

∫
M

Tr(B ∧ F (A)) + g2

∫
M

Tr(B ∧ ?B)

BF theory corresponds to Yang-Mills theory in weak coupling limit

Understand spin foam models as generalized lattice gauge theories
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4D spin foam strategy

As before, discretize and quantise SU(2)× SU(2) BF theory

Bf associated to faces f ∈ ∆∗ (dual to triangles)

ge associated to edges e ∈ ∆∗ (dual to tetrahedra)

ZBF(∆) =
∑
jf ,ιe

∏
f∈∆∗

djf
∏
e∈∆∗

||ιe||−1
∏
v∈∆∗

Interpretation of variables:

jf : area of triangle (dual to f)

ιe: shape of tetrahedron (dual to e)
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Different 4D spin foam models

Implement simplicity constraints to break topological symmetry

Restrictions on irreps (j+, j−) and intertwiners ι

Barrett-Crane model [Barrett, Crane ’98]

Simple bivector → j+ = j−

EPRL-FK model [Engle, Pereira, Rovelli, Livine ’08, Freidel, Krasnov ’08]

Weak imposition of constraints (in discrete):

j± =
1

2
|1± γ| j

Contact with LQG Hilbert space (spin networks)

Simplicity constraints: restrictions on representations and intertwiners
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Spin foams: interpretation and results

Amplitude functional A : Hb → C
Hb: boundary Hilbert space on a
discretisation b

Transition amplitude for Hb = Hi ⊗H∗f
〈s′|s〉A = A(s⊗ s′)
Evolution of 3D geometries

Asymptotic expansion of vertex amplitude
[Conrady, Freidel ’08, Barrett, Dowdall, Fairbarn, Gomes, Hellmann

’09]

Av ∼ cos(SR) + . . .

Implementation of Cosmological Constant
[Han ’11, Fairbarn, Meusburger ’11, Haggard, Han, Kaminski, Riello

’15]

At discrete level: relation to classical gravity

Can we go beyond a few simplices?
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Why we need renormalization

Definition not unique

Lattice is a choice.

Should the lattice be “fine” or “coarse”?

Can we relate the physics on different lattices?

Diffeomorphism symmetry? [Bahr, S.St. ’15]

vs. vs. ...

Physics must be independent of choice of regulator!

How do we bridge the enormous gap to observable physics?

Do we recover general relativity in a suitable limit?
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Relating theories across discretisations

Wilsonian renormalization in absence of a scale

No background geometry

Use the lattice itself as a relative scale

“Fine” vs. “coarse” degrees of freedom

Coarse grain by summing over “fine” degrees of freedom

E.g. decimation procedure

Regge calculus for Λ 6= 0 in 3D [Bahr, Dittrich ’09]

Interactiong theories: non-local interactions arise

Example: Ising model in 2D

Difficult to iterate

Allow for more general boundary data

Complex building blocks that interact locally
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Consistent boundary formulation I [Dittrich, S.St. ’14]

Recall: amplitude functionals Ab : Hb → C
Simplest example: single simplex

Different boundaries b, b′ → different Hb, Hb′

How can we compare Ab and A′b′?

vs. vs. ...

Idea: relate states in Hb to states Hb′
Embedding maps: ιb′b : Hb → Hb′

Boundaries partially ordered set b ≺ b′

Represent the same state on different Hilbert spaces

Hb 3 ψb → ιb′b(ψb) ∈ Hb′
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Consistent boundary formulation II [Dittrich, S.St. ’14]

A′
b′ ψb′

A′
b ψb

Compare amplitude functionals

Ab : Hb → C
A′b′ : Hb′ → C

Renormalization group equation

A′b(ψb) := A′b′(ιb′b(ψb))

Assign different amplitudes to different lattices

Renormalization group flow of spin foam amplitudes
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Tensor network renormalization [Levin, Nave ’07]

Partition function as tensor network

↔ local amplitude

Dynamical embedding map from tensors

Singular value decomposition

Local network

Study flow of tensors under coarse graining
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Results from Tensor networks
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Numerical algorithm

Works for oscillating amplitudes

Finite dimensional Hilbert spaces

2D analogue models for SU(2)k [Dittrich,

Martin-Benito, S.St. ’13, Cameron, Dittrich, Schnetter, S.St. ’16]

3D lattice gauge theories for Z2 and S3 [Dittrich,

Mizera, S.St. ’14, Delcamp, Dittrich ’16]

Fusion basis for 3D SU(2)k lattice gauge
theory [Dittrich, Geiller ’16, Cunningham, Dittrich, S.St. ’20]

Phase transition: confining and deconfing
phase

Critical gc drops as we increase k.

Expectation values of Wilson loops

Hint towards no deconfining phase for continuous group SU(2).
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Results from 4D restricted spin foam models

Complementary route: Study restricted path integral [Bahr, S.St. ’15, Bahr,

Klöser, Rabuffo ’17]
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Proof of principle [Bahr, S.St. PRL ’16]

4D restricted spin foam model

Several simplifications / assumptions

Indication for a UV-attractive fixed point

and restored diffeomorphism symmetry

Diffusion process on space-time

Spectral dimension DS of restricted
spin foam [S.St., Thürigen ’18]

DS ≤ 4 due to superposition of
geometries
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Summary

Spin foam quantisation strategy

Discretisation and quantisation of topological BF theory

Derivation of spin foam representation

4D spin foam models: simplicity constraint

Quantum geometric building blocks

Background independent renormalization

Tackle open questions (diffeomorphism symmetry, discretisation
dependence,...)

Assign a family of amplitudes across lattices

Example: Tensor network renormalization

Fusion basis for 3D lattice gauge theories

Promising results in this line of research

Intriguing open questions remains
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Outlook

Renormalization

Apply tensor networks (or simplified algorithms) to 4D spin foams

Which other numerical methods useful (Monte Carlo)?

Numerical methods

Develop algorithms to compute spin foam amplitudes

Hybrid algorithm, using semi-classical results

Matter and observables

Couple matter to spin foams

Renormalize both gravity and matter

Geometric observables (spectral dimension, curvature)

Thank you for your attention!
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