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Bad Kösen, February 25, 2020



KHRehren String-localized QED Bad Kösen, Feb 2020 2 / 43

Abstract

Several old problems of QED can be addressed by formulating the
interaction with the help of “string-localized potentials”.

The latter are expected to be useful also in other theories.

(Joint work with J. Mund and B. Schroer, JHEP 01 (2020) 001)



KHRehren String-localized QED Bad Kösen, Feb 2020 3 / 43

Gauss’ Law and Locality

QED has a well-known puzzle (Ferrara–Picasso–Strocchi 1974):

Gauss’ Law

QR =

∫
R·B3

d3x ~∇~E (~x) =

∮
R·S2

d~a · ~E (~x)

is in conflict with local commutation relations if the interacting
Dirac field ψ were an (anti-)local quantum field.

Namely, the right hand side would have to commute with ψ(y) if R
is large enough, while in the limit R →∞, QR becomes the total
charge operator satisfying

[Qelm, ψ(y)] = −q · ψ(y).
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This kind of problems is hard to see in Euclidean or functional
integral approaches to QED.

It is also not a feature of the scattering matrix (“on-shell”).

It concerns the actual quantum fields as algebraic objects
(operators on a Hilbert space).
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Quantum fields as operators on a Hilbert space H:

Are operator-valued distributions f 7→ Φ(f )“=”
∫
d4x f (x)Φ(x).

Transform covariantly under AdU , U a unitary repn of the
Poincaré group.

Commute at spacelike distance (Einstein Causality).

Only for free fields is the commutator specified otherwise.

Only free fields are given in terms of “creation and annihilation
operators”.

Only free fields satisfy well-defined a priori field equations.

Perturbation theory: Expresses (at least in a first step)
interacting fields as “power series” in free fields.

Renormalized interacting field equations may follow.
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“Free QED” is just a tensor product of Maxwell fields Fµν (living on
the photon Fock space) and Dirac fields ψ and their current
jµ = ψγµψ (living on the spinor Fock space). No interaction.

QED couples the fields. E.g., Gauss’ Law

∂µF
µν(x) = −q jν(x)

requires that the first-order perturbation of the operator on the l.h.s.
must equal −q times the free Dirac current.
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Several ways out of the QED puzzle:

The Dirac field is not observable anyway, so why bother about
it at all?
→ How to set up perturbation theory?

Pass to a formulation with indefinite metric (negative-norm
states) which has a compensating “fictitious current” (see
below).
→ Need to pass back to a physical Hilbert space
(Gupta-Bleuler, BRST)

The problem is due to the “infrared photon cloud” attached
to a charged particle.
New idea: Search for the source of the problem in the Maxwell
field, coupled to the Dirac field.
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The photon cloud is known to be responsible for several other IR
issues:

Its asymptotic electric flux must commute with all observables.
Hence it is a multiple of 1 in every irreducible representation.
Its values distinuguish infinitely many inequivalent repns
(superselection sectors). (Buchholz 1982)

The asymptotic flux is not Lorentz invariant (it depends on the
velocity of the charged particles). Therefore, it breaks Lorentz
invariance in the charged sectors. (Fröhlich–Morchio–Strocchi
1979)

It prevents the electron from having a sharp mass. (Buchholz
1982)

This in turn explains the failure of LSZ scattering theory,
which therefore requires proxies like “soft photon inclusive cross
sections”. (Bloch–Nordsieck 1937)
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All these “infrared issues” are due to the masslessness and the
photon and the long-range of electro-magnetic forces.

They are expected to make a similar appearance with gravitons.
E.g., the Bondi-Misner-Sachs group should be related to infrared
superselection sectors.

Strominger’s “Infrared Triangle” addresses the same issues and
their inter-relations. (Strominger, 2018)

This talk: Provide a new understanding in terms of the
operator-algebraic nature of fields coupled to massless particles.
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Indefinite metric approach
The Maxwell potential Aµ(x) can be canonically quantized
provided one adds a gauge-fixing term −λ

2 (∂A)2 to the Lagrangian.
The resulting canonical commutation relations for the creation and
annihilation operators yield an indefinite inner product for
one-particle and Fock states (they involve ηµν and δ′(p2).)

Thus the theory is built on a Krein space (“Hilbert space with
indefinite metric”). This is physically intolerable, and the physical
Hilbert space is defined as

H := H0/H00

where H0 is the semi-definite subspace of vectors satisfying the
Gupta-Bleuler condition (∂A)−Ψ = 0, and H00 ⊂ H0 is the
subspace of H00 of zero-norm states.

(BRST generalizes this to non-abelian gauge theories.)
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On the Krein space, one can construct (anti-)local interacting
Maxwell and Dirac fields. But charged states created by the Dirac
field cannot satisfy the GB condition, and the Dirac field just
drops out of the theory upon passage to the physical Hilbert space.

How about the Gauss Law in the Krein space? The asymptotic
electric field certainly commutes with the Dirac field. So the total
flux cannot equal the charge operator.

Indeed, before the GB condition is imposed, Maxwell’s equations
hold with an extra term:

∂µF
µν = −q · jνDirac − λ · ∂ν(∂A).

The second term is a “fictitious current”: it vanishes between
physical states satisying the GB condition. But the total integral
Qfict over its density cancels the commutator [Qelm, ψ]. This solves
the contradiction, but does not settle the physical puzzle.
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String-localized approach

Covariant quantization starts with the potential A and defines the
Maxwell field strength as the derivative F = dA.

String-localized (“s-loc”) quantization starts with the field
strength and constructs the potential A(e) as a primitive of F .

Autonomous quantization of Fµν :

Take the unitary one-particle representation of the Poincaré group
with helicity ±1 (Wigner 1939, Mackey 1952). Follow the
prescription of Weinberg (1964) to get a local quantum field on the
Fock space.

F lives directly on the physical Hilbert space. And so does A(e).
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There are many primitives of F = dA. A particularly nice choice is

Aµ(x , e) =
∫∞

0 ds Fµν(x + se)eν

where e is any non-zero directional vector in R4. It solves
F = dA(e).

The direction e has no physical meaning. The operator A(e) is just
a tool to write down the coupling

Lint = Aµ(e)jµ

of the Dirac current jµ = ψγµψ to the electromagnetic field,
avoiding negative-norm states and explicit breaking of Lorentz
covariance.

Its choice will however affect the charged states generated by the
(unobservable) interacting Dirac field.

See below
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Aµ(e) is Poincaré covariant in the sense

U(a,Λ)Aµ(x , e)U(a,Λ)∗ = ΛνµAν(Λx + a,Λe).

It is localized along the “string”

Se(x) = x + R+ · e

in the sense that A(x , e) commutes with A(x ′, e ′) if their strings
Se(x) and Se′(x

′) are spacelike separated.

In scattering theory, causal commutativity is important for the
“separation of wave packets at asymptotic times”. Because timelike
strings can never be spacelike separated, we limit ourselves to
spacelike strings, WLOG e2 = −1.
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S-loc vs positive quantizations

The timelike choice e = (1,~0) ⇒ A0(e) = 0 and
~A(x , e) =

∫∞
x0 dt ~E (t, ~x) is identical with the usual “Coulomb

gauge”.
Indeed, the Coulomb gauge potential is highly non-local.

For every fixed spacelike e, A(e) is identical with the “axial
gauge”: eµAµ(e) = 0. However, unlike in the axial gauge, e
transforms under Lorentz transformations.

The main difference is that the potentials A(e) for all e “live
together” on the same physical Hilbert space of the field strength
Fµν . They are all “made of” the same creation and annihilation
operators for the physical two photon states. No longitudinal
photons and no ghosts occur.
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S-loc vs covariant quantizations
The s-loc potential

Aµ(x , e) :=

∫ ∞
0

ds Fµν(x + se)eν ≡ Ie(Fe)µ(x)

is also defined on the Krein space, where F = dAK is the
derivative of a covariant indefinite-metric potential AK (“K”
standing for “Krein”). In this case, the difference is

Aµ(x , e) = AK
µ (x) + ∂µφ(x , e)

where the “escort field” φ(x , e) = Ie(AKe)(x) is another
string-localized field.

Like AK
µ (x), the escort field φ(x , e) is defined only on the Krein

space. Only F and A(e) descend to the physical quotient space.

This co-existence permits interesting contrasts mediated by the
escort field (“hybrid approach”).
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Comparison of the QED coupling

The coupling to the Dirac current jµ = ψγµψ satisfies

Lint(e) ≡ Aµ(e)jµ = AK
µ j

µ + ∂µ
[
φ(e)jµ].

In classical theory, this would mean that the action
∫
d4x Lint(x) is

the same, and the field equations are the same.

It is by no means obvious that this survives the quantization.

Aims: Show that string-localized (“s-loc”) QED

yields the same cross sections (no “new QED”),

gives a better description of the properties of its interacting
quantum fields (including Gauss’ Law, the behaviour at
spacelike infinity, and infra-particles).
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The scattering matrix

The scattering matrix is defined in terms of the interaction density
(“Lagrangian” Lint) as

S = limg(y)→q T exp
(
i
∫
d4y g(y)Lint(y)

)
The limit g(x)→ q of removing the IR cutoff of the coupling
constant is called “adiabatic limit”.

In PT, one defines the time-ordered exponential via the Wick
expansion as a power series. The problem is that expressions like

TLint(y1) . . .Lint(yn)

are not a priori defined (multiplication of distributions).
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Renormalization

Microlocal analysis shows that TLint(y1) . . .Lint(yn) can be defined
in a Lorentz covariant way, and such that they fulfill the causality
features suggested by the time-ordering symbol T . However, the
definition is in general not unique, and the freedom is some
derivative of the “total delta fn” supported at y1 = · · · = yn.
(Epstein–Glaser 1973)

In Fourier space, derivatives of the total delta fn are polynomials in
the momenta, and the freedom is the usual freedom of
renormalization by “counter terms” (that also produce polynomials
in momentum space). The freedom has to be fixed.

In the indefinite-metric approach, the most prominent requirement is
gauge invariance (so that the S-matrix descends to the physical state
space).
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String-independence

In the s-loc approach, the principle of string-independence (PSI)
is imposed: The scattering matrix must not depend on the arbitrary
direction e in the adiabatic limit.

Recall: e was only introduced in order to be able to write down
Lint(e) = Aµ(e)jµ as an operator on the Hilbert space.

PSI requires ∂e [TLint . . .Lint]
!

= total derivative.

“Time-ordering” in the s-loc approach is w.r.t. strings rather than
points. The “total delta fn” is supported on configurations where
strings intersect. This makes renormalization a much more
complicated task. It can be done in lowest orders by hand, and the
PSI can be satisfied.

→ Some interesting mathematics in differential renormalization of
loop diagrams (Gass, PhD project)
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Interacting fields

Interacting fields are constructed via “Bogoliubov’s formula”

Φint(x) = limg(y)→q
−iδ
δf (x)

(
Te iLint(g)

)∗
Te iLint(g)+iΦ(f ).

As a formal expansion, the interacting field is a series in iterated
retarded commutators

R(Lint(y1), . . . ,Lint(yn); Φ(x)) =

= inθ(x0 > y0
1 > · · · > y0

n )[[. . . [Φ(x),Lint(y1)], . . . ],Lint(yn)],

expanded by Wick’s theorem into operators and propagators, and
integrated over g(y1) . . . g(yn).
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The retarded commutators contributing to Φint(x) involve free fields
localized in the past of x . Clearly, Φint(x) does not satisfy causal
commutativity with the free fields.

What matters is, however, that (observable) interacting fields
causally commute among each other. The Bogoliubov map
Φ 7→ Φint is known to secure this feature, without being an algebraic
isomorphism (i.e., the non-vanishing commutators change.)

Again, to define Φint, the retarded commutators = products of
distributions need a definition, which may introduce some
renormalization freedom. For observable fields, the freedom must
be fixed by gauge invariance, or PSI, resp.

String-localized propagators have a more involved structure as
distributions in x (or p) and e.
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First order QED

The vector potential in first order is

Fµνint (x) = Fµν(x) + i

∫
d4y g(y) θ(x0 − y0)[Fµν(x),Aκ(y , e)]︸ ︷︷ ︸

i
(
∂

[µ
x δ

ν]
κ +∂

[µ
x e

ν]
∂yκIy

e

)
G ret

0 (x−y)

jκ(y).

The Dirac field in first order is

ψint(x , e) = ψ(x)+

∫
d4y g(y)(i /∂x +m)G ret

m (x−y)γκψ(y)Aκ(y, e).

Both are string-localized expressions. But in Fµνint , the term
involving Ie can be partially integrated and vanishes in the adiabatic
limit because ∂κj

κ = 0. The result coincides with “ordinary” QED.

In contrast, the interacting Dirac field inherits the
string-localization from the vector potential.
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From this,

∂µF
µν
int (x) = −g(x)jν(x) + eν

∫ ∞
0

ds ∂κg(x − se)jκ(x − se) + O(g2)

g(x)→q−→ −qjν(x)

because the region where ∂κg 6= 0 “moves outside” where matrix
elements of jκ decay rapidly.

Thus, Gauss’ Law is satisfied (in first order in the adiabatic limit).
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The initial conflict between Gauss’ Law and causal commutativity is
resolved because ψint(y , e), being localized along a string extending
to ∞, does not commute with the asymptotic electric flux.

The finding that unobservable charged fields may become
string-localized upon interaction, is a feature that was not
anticipated by the celebrated Wightman axiomatics
(Streater–Wightman 1963).

It rather confirms a finding (Buchholz–Fredenhagen 1982) in the
more general Algebraic QFT setting, that charged states may
differ from the vacuum in spacelike cones extending to ∞ (and
thus require s-loc fields to “create” them from the vacuum).



KHRehren String-localized QED Bad Kösen, Feb 2020 26 / 43

The next task is to compute asymptotic fluxes, i.e., the expectation
value of r2 ~Eint(r~n) for large r in states Ψ = ψ∗int(f , e)Ω, ||Ψ|| = 1.

For the interaction, we allow to average Lint(e) over e = (0, ~e) with
some smearing function h(~e).

The computation is lengthy. It reveals several cancellations of terms
that would correspond to the “fictitious current”. The final result is
(in first order in the asymptotic limit)

limr→∞ r2(Ψ(h), ~Eint(r~n)Ψ(h)) = −q · h(~n)~n,

i.e., the smearing function h determines the directional profile of the
asymptotic electric flux of the photon cloud.
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The asymptotic flux is not string-independent. This does not
conflict with PSI, because ψint is not an observable. Instead, while
the electric field as an operator is independent of e, its expectation
value in the string-dependent state Ψ(h) = ψ∗int(f , h)Ω is not.

By choosing e (or the smearing h(~e)), one can “engineer” the shape
of the photon clouds of charged states at will.

Moreover, the non-vanishing of the asymptotic flux is a perturbative
confirmation of the abstract expectation (necessary for Gauss’ Law),
and it entails, by Buchholz’ argument, that the mass operator
M2 = PµP

µ cannot have a discrete spectrum in charged states.
Electrons are infra-particles.
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Photon cloud superselection

We have given (Mund, KHR, Schroer 2020) a simplified (and
“semi-nonperturbative”) argument in favour of the conclusion that
normalized charged states Ψ(h) = ψ∗int(f , h)Ω prepared with different
photon clouds (asymptotic flux profiles = averaging functions h in
Lint(h)) are mutually orthogonal. These states yield a continuum of
inequivalent representations of the algebra of observables.

This is a perturbative confirmation of the structural conclusions of
Fröhlich–Morchio–Strocchi (1979) and Buchholz (1982) in the
axiomatic setting.

Speculation: The asymptotic symmetry underlying this
superselection structure seems to be a Heisenberg group with
asymptotic electric fluxes as “phase operators” e iaP and asymptotic
magnetic fluxes as “shift operators” e iaQ .



KHRehren String-localized QED Bad Kösen, Feb 2020 29 / 43

More applications of s-loc QFT

The same construction

Pµ(x , e) :=

∫ ∞
0

ds Fµν(x + se)eν

can also be made with the Proca field (“massive photons”) of spin
1, where Fµν(x) = ∂µPν(x)− ∂νPµ(x) and ∂µF

µν = −m2Pν . It
holds again

Pµ(x) = Pµ(x , e)− ∂µφ(x , e).

The Proca field P has dimension 2 (which forbids its coupling of
massive photons to a Dirac current of dimension 3) while P(e) has
dimension 1. P does not have a massless limit, while P(e) does.

Thus the escort field φ(x , e) “carries away” both the undesired bad
UV behaviour of the Proca field, and its contribution obstructing the
massless limit (Mund–KHR–Schroer 2017).
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Similar with the massive Rarita-Schwinger field ψµ of spin 3
2 : It

has dimension 5
2 , hence its current jµ = ψνγ

µψν has dimension 5
and cannot be coupled to anything. In contrast, the s-loc RS field
ψµ(x , e) has dimension 3

2 , and yields a current of dimension 3 that
may couple electromagnetically.

While ψµ has no massless limit, the massless limit of ψµ(e) exists
and is the helicity 3

2 field (“gravitino”).
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Likewise for fields in all other representations of the Poincaré
group.

The “infinite-spin” representations are exceptional: They do not
admit any point-localized fields (Yngvason 1970). But a
string-localized field can be constructed directly from the Wigner
representation (Mund–Schroer–Yngvason 2005), or as a massless
limit of s-loc tensor fields of increasing spin (KHR 2017).

String-localized versions of massive fields have better UV
behaviour (dimension 1 rather than s + 1 for integer spin,
dimension 3

2 rather than s + 1 for half-integer spin) and therefore
admit couplings that are otherwise non-renormalizable.
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L-V -pairs and L-Q pairs

The principle of string-independence (PSI) for the scattering matrix
in first order imposes conditions on the admissible interactions:
It requires that the e-dependence of the interaction density is a total
derivative:

∂eLint(e) = ∂µQ
µ(e).

A stronger version is that there exists another point-localized
interaction density Lint (without any s-loc fields in it) such that

Lint(e) = Lint + ∂µV
µ(e).

QED in Krein space is of this type, with V µ = φ(e)jµ (see above).
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Unlike gauge-invariance of the full Lagrangian, these are conditions
on the interaction density separately.

They are quite restrictive. E.g., for interactions involving massive
vector fields, they cannot be fulfilled without another massive
scalar field present.

PSI in higher perturbative order imposes more constraints. For
self-interacting vector bosons, PSI can be fulfilled only if the cubic
coupling coefficients are anti-symmetric and satisfy the Jacobi
identity (“gauge symmetry without gauge principle”).

For a model with the field content of the weak interactions, the
coupling must be chiral:

Wµ · ψγµ(1± γ5)ψ.

The sign is undetermined. (Gracia-Bondia–Mund–Varilly 2018)
It happens to be − in nature.
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In second order, PSI of TLint(y1)Lint(y2) might be violated by
terms of the form ∂e [δ(y1 − y2)X (y1, y2, e1, e2)]. Such obstructions
can be cancelled by adding the “induced” Lagrangian
Lind(y , e1, e2) = −X (y , y , e1, e2) to the first-order interaction
density.

E.g., in a theory with massive vector bosons, a quartic
self-potential for the scalar field is forced by PSI to have the form

Φ2(Φ− Φ0)2.

PSI thus “predicts” the Higgs potential “after the shift” that is
usually assumed to trigger spontaneous symmetry breaking.

This is “Higgs physics without Higgs mechanism” (and in fact,
without gauge symmetry). (Mund–KHR–Schroer, work in progress)
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Helicity 2

Massless fields of helicity 2 should describe gravitons, propagating in
a Minkowski background (“linearized quantum gravity”).

Canonical quantization requires indefinite metric, as for helicity 1.

Approximation by massive fields of spin 2 (positive metric) reveals a
discontinuity at m = 0 (van Dam–Veltman–Zakharov 1970). In fact,
the massive spin-2 field does not even have massless limit.

The simplest string-localized massive spin-2 field has a massless
limit, but it still has the DVZ discontinuity. Indeed, its limit is a
mixture of helicity 2 and helicity 0. A better s-loc massive spin-2
field was found (Mund–KHR–Schroer 2017) that has no
discontinuity and decouples from helicity 0 in the limit.
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Finding L-Q pairs for self-interactions of helicity-2 fields is not
easy.

With s-loc fields, the lowest possible dimension is 5. This is beyond
the renormalizability bound 4, but still better than p-loc
self-couplings without indefinite metric (dimension at least 9, in fact
11 for anything similar to massive gravity).

The dimension-5 self-interaction has the structure

Lint = g ·
(
hµνT [h]µν − hµκhνλR[h]µνκλ

)
where T [h] is an s-loc graviton stress-energy tensor quadratic in
∂h, and R[h] is the linearized curvature ∼ ∂∂h.

With g = G
3 , Lint coincides with Einstein-Hilbert gravity in cubic

order if all its constraints could be eliminated “by hand”.

Do E-H higher-order terms arise by “induction”? (Gass, PhD project)
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Backup
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S-loc propagators

The Feynman propagator for the field strength F

i(Ω,T [Fµν(x)Fκλ(y)]Ω) =
(
ηµκ∂ν∂λ ± three terms

)
G0(x − y)

implies the propagator for A(e)

eνe ′λ
(
ηµκ∂ν∂λ ± three terms

)
I xe I

y
e′G0(x − y).

(Recall Ie f (x) :=
∫∞

0 f (x + se).

In momentum space: Ie = −i
(pe)−i0 , Ie′ = i

(pe′)+i0 .)

The propagator for F would admit a renormalization by
c(ηµκηνλ − ηνκηµλ)δ(x − y). But PSI requires c = 0.

(Similar for the retarded commutators)
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A “magic formula”

In the “hybrid approach” (A(e) and AK coexist on the Krein space
and differ by the derivative ∂φ(e) of the “escort”) one can prove

ψ
∣∣∣
L(e)=A(e)j

=
(
e iqφ(e)ψ

)∣∣∣
L=AK j

L.h.s. descends to the physical Hilbert space, but is a priori
badly de-localized.

R.h.s. is string-localized, but a priori only defined on Krein
space.

By equality, ψint is string-localized on the Hilbert space.

There are subtle issues.
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Magic formula

The magic formula is “semi-perturbative”: the exponential
e iqφ(x ,e) should be taken serious and considered as a Weyl
operators W (f , h) = e iφ(f ,h) with smearing functions f (x) and
h(e) such that

∫
f = q and

∫
h = 1.

Because of the string-integration involved in φ(e), these Weyl
operators are highly singular and require several regularizations
(mass, multiplicative renormalization).
→ Simpler analogy in 2D (Schroer 1962).

In the limit, one obtains a positive state ω on the Weyl algebra
in which

ω(W (f , h)∗(neutral operators)W (f , h′)) ∼ δhh′ .

The Weyl operators live in the GNS Hilbert space of this state,
which splits into a direct integral of Hilbert spaces describing
states with different asymptotic fluxes.
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BCRV
The analysis of the paper JHEP 01(2020)001 was triggered by
Buchholz, Ciolli, Ruzzi, Vasselli: LMP 109 (2019) 2601–2610.

The authors point out that s-loc potentials do not contain the
unphysical “longitudinal component” of the vector potential, which
is, however, needed to create from the vacuum states in which local
electric fluxes are non-zero (states with local charge distributions).
Thus, QED cannot be constructed with the s-loc potentials only.

Their conclusion is correct as long as QED is constructed from the
electromagnetic sector only, and the current DEFINED by
jν = ∂µF

µν , without reference to Dirac fields. This is in the spirit of
Buchholz, Ciolli, Ruzzi, Vasselli: LMP 107 (2017) 201–222 and LMP
109 (2019) 829–842.

In contrast, we DO use Dirac fields, and analyse their algebraic
properties, which – in spite of them being unobservable – reflect
localization properties of physical photon clouds.


