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Composite operators in QFT 1/3

Quantities of interest: time-ordered correlation functions in the interacting theory
〈TI φ(x1) · · ·φ(xn)〉Ω = 〈T φ(x1) · · ·φ(xn) exp (iL/~)〉0

〈T exp (iL/~)〉0
(Gell-Mann–Low formula with

Ω: interacting vacuum, 0: free vacuum, L: interaction, T : time-ordering)
Finite results after renormalisation of parameters in the Lagrangian: masses m,
couplings λ, wave-functions Z : renormalised correlation functions are well-defined
distributions
However, coinciding point limit is singular:〈
φ2(x)φ(y1) · · ·φ(yn)

〉
0 = limx ′→x 〈φ(x)φ(x ′)φ(y1) · · ·φ(yn)〉0 =∞ !

In free theory, obtain finite composite operators by normal ordering:
:φ(x)φ(x ′):0 ≡ φ(x)φ(x ′)− 〈φ(x)φ(x ′)〉01〈
:φ2(x):0 φ(y1) · · ·φ(yn)

〉
0 = limx ′→x 〈:φ(x)φ(x ′):0 φ(y1) · · ·φ(yn)〉0 <∞
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Composite operators in QFT 2/3

In flat Minkowski spacetime, unique Poincaré-invariant vacuum state 0
In curved spacetime, only family of states ω with the same high-energy /
short-distance behaviour as in flat space (Hadamard states)
Characterised by properties of two-point function: G+

ω (x , x ′) ≡ −i〈φ(x)φ(x ′)〉ω
For x , x ′ in a normal geodesic neighborhood: Hadamard expansion (in 4D)
G+
ω (x , x ′) = −i [H+(x , x ′) + Wω(x , x ′)] with

H+(x , x ′) = U(x , x ′)
σ+(x , x ′) + V (x , x ′) lnσ+(x , x ′) and σ+(x , x ′) = σ(x , x ′) + iεt(x , x ′),

where σ(x , x ′): half of square of geodesic distance between x and x ′, t: time function,
U/V /Wω: smooth/analytic biscalars
U and V (singular part) are uniquely determined by the geometry of the spacetime,
Wω (regular part) depends on the state, in higher dimensions more singular terms
Global alternative: microlocal spectrum/wave front set condition (G+ is singular only if
x and x ′ are connected by lightlike geodesic and cotangent vectors are future-pointing)
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Composite operators in QFT 3/3

Normal ordering can be done with respect to any Hadamard state:
:φ(x)φ(x ′):ω ≡ φ(x)φ(x ′)− 〈φ(x)φ(x ′)〉ω1
Since state is not unique, :•:ω does not transform covariantly under coordinate
transformations ⇒ normal order w.r.t. singular part only (Hadamard parametrix)
:φ(x)φ(x ′):H ≡ φ(x)φ(x ′)− H(x , x ′)1
To define composite operators with derivatives, apply them before taking coincidence
limit (point-splitting method)
Example: Tµν(x) = limx ′→x

[(
∇x
µ∇x ′

ν − 1
2gµν(x)∇x

α∇αx ′ − 1
2gµν(x)m2

)
:φ(x)φ(x ′):H

]
Renormalisation freedom is restricted by covariance requirement, example:
:φ2(x):H → :φ2(x):H + (c1m2 + c2R)1 with c1, c2 constant
Anomalies arise from terms which vanish classically by the EOM, but not after
subtraction → talk by S. Theisen tomorrow morning
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The Operator Product Expansion 1/3

Rearrange terms to get φ(x)φ(x ′) = H(x , x ′)1 + :φ(x)φ(x ′):H , and instead of taking
the limit x ′ → x , expand (formally) around x ′ = x

φ(x)φ(x ′) = H(x , x ′)1 + :φ2(x):H + (x ′ − x)µ:φ(x)∇µφ(x):H

+ 1
2(x ′ − x)µ(x ′ − x)ν :φ(x)∇µ∇νφ(x):H + . . .

Family of composite operators multiplied by (possibly singular) spacetime distributions
Free theory OPE: φ(x)φ(x ′) =

∑
B CB

φφ(x , x ′):OB(x):H with C1φφ(x , x ′) = H(x , x ′),
Cφφφ(x , x ′) = 0, C∇µφ

φφ (x , x ′) = 0, Cφ
2

φφ(x , x ′) = 1, Cφ∇µφ
φφ (x , x ′) = (x ′ − x)µ, ...

Sum over all composite operators, ordered by dimension: [φ] = (D − 2)/2, [∇] = 1
Scaling degree of CB

φφ is D− 2− [OB] (determines how singular CB
φφ(x , x ′) is as x ′ → x)
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In general, OPE for product of arbitrary composite operators
:OA1(x1):H · · · :OAn (xn):H =

∑
B CB

A1···An
(x1, . . . , xn):OB(xn):H

Each OPE coefficient CB
A1···An

has scaling degree [OA1 ] + · · ·+ [OAn ]− [OB]
Conventional wisdom says that OPE is an asymptotic relation:

lim
τ→0

τ [OA1 ]+···+[OAn ]−∆
[
〈:OA1(τx1):H · · · :OAn (τxn):H〉ω

−
∑

B : [OB ]≤∆
CB

A1···An (τx1, . . . , τxn)〈:OC (τxn):H〉ω

]
= 0

in any Hadamard state ω, as we scale the points together
Coefficients CB

A1···An
are independent of state, one-point functions determine state

Analogy to Lie algebra relation: [tA, tB] = fAB
C tC , where the explicit expressions for

the generators tA depend on representation, but structure constants fAB
C do not
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Factorisation condition from performing an OPE in two different ways:
〈:OA(x):H :OB(y):H :OC (z):H〉ω
=
∑

E CE
ABC (x , y , z)〈:OE (z):H〉ω

=
∑

E
∑

D CD
AB(x , y)CE

DC (y , z)〈:OE (z):H〉ω
=
∑

E
∑

D CD
BC (y , z)CE

AD(x , z)〈:OE (z):H〉ω for suitable x ,y ,z
Commutation with derivatives: ∇x1

µ CB
A1···An

(x1, . . . , xn) = CB
(∇A1)···An

(x1, . . . , xn)
Further algebraic relations between coefficients stemming from the underlying
theory/perturbation, example: interacting field equation
(∇2

x −m2)CB
φA1···An

(x , x1, . . . , xn) = λCB
φ3A1···An

(x , x1, . . . , xn) + contact terms
Up to now, all that was said was for free quantum field theory, and we need to
generalise to (perturbatively) interacting theory



The Operator Product Expansion as a structural property of Quantum Field Theories
Euclidean field theories: the Renormalisation Group (RG) Flow Equation framework

Euclidean field theories: the Renormalisation Group (RG) Flow
Equation framework



The Operator Product Expansion as a structural property of Quantum Field Theories
Euclidean field theories: the Renormalisation Group (RG) Flow Equation framework

The RG flow equation framework 1/4

Concrete calculation of 〈TIOA1 · · · OAn φ1 · · ·φk〉Ω via regularised path integral
Define
LΛ,Λ0 ({OAi}; Φ) ≡ −~ ln

∫
exp

(
−1

~φG−1
Λ,Λ0

φ− 1
~L(φ+ Φ)

)∏n
i=1OAi (φ+ Φ, xi )Dφ

LΛ,Λ0 is the generating functional of connected, amputated correlation functions with
insertions of composite operators: LΛ,Λ0 ({OAi}; Φ) =

∑
k Φk〈OA1 · · · OAn φ1 · · ·φk〉c,a

Formal perturbation parameter ~ (loop counting parameter)
L is the perturbation (example: λφ4) plus counterterms needed for renormalisation
(example: ~λΛ2

0φ
2)

OAi is the classical expression for to the operator OAi plus counterterms

GΛ,Λ0(k) = (k2 + m2)−1
[

e
− k2+m2

Λ2
0 − e−

k2+m2
Λ2

]
is a regularised propagator with infrared

cutoff Λ and ultraviolet cutoff Λ0, physical limit is Λ0 →∞, Λ→ 0
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LΛ,Λ0 = 0 for free theories → measures non-triviality
Take derivative w.r.t. Λ and obtain flow equations:
∂ΛLΛ,Λ0 = ~

2
δ

δΦ ·
(
∂ΛCΛ,Λ0

)
· δ
δΦLΛ,Λ0 − 1

2

(
δ

δΦLΛ,Λ0

)
·
(
∂ΛCΛ,Λ0

)
·
(
δ

δΦLΛ,Λ0

)
∂ΛLΛ,Λ0(OA) = ~

2
δ

δΦ ·
(
∂ΛCΛ,Λ0

)
· δ
δΦLΛ,Λ0(OA)

−
(
δ

δΦLΛ,Λ0

)
·
(
∂ΛCΛ,Λ0

)
·
(
δ

δΦLΛ,Λ0(OA)
)

, etc.

Boundary conditions: for Λ = Λ0 we recover “bare” theory: LΛ0,Λ0 = L
Formal expansion in ~ (perturbation theory, loop order `) and number n of Φ fields
gives LΛ,Λ0,`n (k) in momentum space
No Feynman diagrams, no forest formula
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Flow equation:

∂ΛLΛ,Λ0,`
n (k) = 1

2

∫ (
∂ΛCΛ,Λ0(p)

)
LΛ,Λ0,`−1

n+2 (k, p,−p) d4p
(2π)4

− 1
2

n∑
n′=0

∑̀
`′=0
LΛ,Λ0,`′

n′+1 (k,−q)
(
∂ΛCΛ,Λ0(q)

)
LΛ,Λ0,`−`′

n−n′+1 (q, k)

Suitable for induction: right-hand side either lower ` or lower n since
LΛ,Λ0,0

1 = LΛ,Λ0,0
2 = 0 (reason for connected & amputated)

Can also give boundary conditions at Λ = 0 instead of Λ = Λ0:
L0,Λ0,`n (k) = LΛ0,Λ0,`n (k)−

∫ Λ0
0 ∂λLλ,Λ0,`n (k) dλ

For n + |w | ≤ 4 arbitrary conditions at Λ = 0 and k = 0,
for n + |w | > 4 we have ∂wLΛ0,Λ0,`n (k) = 0
Additional momentum derivatives ∂w are needed to close induction (LΛ,Λ0,`n smooth in
k for all Λ < Λ0)



The Operator Product Expansion as a structural property of Quantum Field Theories
Euclidean field theories: the Renormalisation Group (RG) Flow Equation framework

The RG flow equation framework 4/4

Bounds:
∥∥∥∂wLΛ,Λ0,`n (k)

∥∥∥ ≤ sup(Λ,m)4−n−|w |P
(

ln+
Λ
m , ln+

|k|
m

)∥∥∥∂w∂Λ0L
Λ,Λ0,`n (k)

∥∥∥ ≤ Λ−2
0 sup(Λ,m)5−n−|w |P

(
ln+

Λ0
m , ln+

|k|
m

)
Uniformly bounded and convergent as Λ0 →∞, finite as Λ→ 0
Functionals with operator insertions have similar flow equation, induction scheme
works if one ascends in the number of insertions
Boundary conditions for one insertion at Λ = 0 and k = 0 for n + |w | ≤ [OA], at
Λ = Λ0 for the rest
Bounds:

∥∥∥∂wLΛ,Λ0,`n (OA(0); k)
∥∥∥ ≤ sup(Λ,m)[OA]−n−|w |P

(
ln+

Λ
m , ln+

|k|
m

)∥∥∥∂w∂Λ0L
Λ,Λ0,`n (OA(0); k)

∥∥∥ ≤ Λ−2
0 sup(Λ,m)[OA]+1−n−|w |P

(
ln+

Λ0
m , ln+

|k|
m

)
LΛ,Λ0,`n (OA(x); k) = e−ix

∑
j kjLΛ,Λ0,`n (OA(0); k) is smooth in x
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OPE in the RG flow equation framework 1/2

Functionals with multiple insertions are distributions in the insertion points xi , scaling
degree controlled by additional counterterms of dimension ∆
Bounds for functionals with two insertions:

∥∥∥∂wLΛ,Λ0,`
n,∆ (OA(x)OB(y); k)

∥∥∥ ≤
|x − y |∆−[OA]−[OB ] sup(Λ,m)∆−n−|w |P

(
ln+

Λ
m , ln+

|k|
m

)
Define OPE coefficients CC

AB(x) ∝ ∂w
k L

Λ,Λ0,`
n,[OC ]−1(OA(x)OB(0); 0) for

[OC ] < [OA] + [OB], and by additional derivatives w.r.t. x otherwise
Prove bounds for the OPE remainder∥∥∥LΛ,Λ0,` (OA(x)OB(0); Φ)−

∑
C :[C ]≤N CC

AB(x)LΛ,Λ0,` (OC (0); Φ)
∥∥∥

≤ (N!)− 1
2 sup(m,Λ)n+NKN |x |N−[OA]−[OB ] ‖Φ‖(N+2)(`+5)/2

OPE is actually convergent for arbitrary (spacelike) separations!
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Prove bounds on appropriate differences of finite sums, and show that they converge as
N →∞ at each fixed perturbation order `
Factorisation: CC

A1···An
(x1, . . . , xn) =

∑
B CB

A1···Ak
(x1, . . . , xk) CC

BAk+1···An
(xk , . . . , xn)

holds for all max1≤i≤k |xi − xk |
mink<j≤n |xi − xk |

< 1

Coupling constant derivative (for λφ4 interaction):
∂λCC

AB(x , y) = −
∫ [
CC
φ4AB(z , x , y)−

∑
D : [OD ]≤[OA] CD

φ4A(z , x)CC
DB(x , y)

−
∑

D : [OD ]≤[OB ] CD
φ4B(z , y)CC

AD(x , y)−
∑

D : [OD ]≤[OC ] CD
AB(x , y)CC

φ4D(z , y)
]

d4z

Explicit formula in perturbation theory in λ (OPE coefficients of free theory known
from previous section)
Finite formula in fixed (BPHZ-like) renormalisation scheme with explicit counterterms
that ensure convergence
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Conformal Field Theories 1/3

In addition to Poincaré covariance, the correlation functions of CFTs are covariant
under scale transformations xµ → x ′µ = αxµ and special conformal transformations
xµ/x2 → x ′µ/x ′2 = xµ/x2 − bµ

Classically scale-invariant theories: massless λφ4 or Yang–Mills theory in 4D
In the quantum theory scale invariance is mostly anomalous, but examples of CFTs
known (or at least conjectured): critical Ising model or Liouville theory in 2D, O(N)
model or QED with Nf > 2 fermions in 3D, N = 4 super-Yang–Mills in 4D
In CFT, all composite operators classified into primaries and descendants (derivatives
of primaries)
Two- and three-point functions of primaries completely fixed by conformal symmetry:
〈OA(x)OB(y)〉0 = δAB tAB(x , y)

|x − y |2[OA] , where tAB: fixed tensor structure



The Operator Product Expansion as a structural property of Quantum Field Theories
Application to Conformal Field Theories (CFTs)

Conformal Field Theories 2/3

〈OA(x)OB(y)OC (z)〉0 =
∑
α λ

α
ABC tαABC (x , y , z)

|x − y |[OA]+[OB ]−[OC ]|y − z |[OB ]+[OC ]−[OA]|x − z |[OA]+[OC ]−[OB ] ,

where tαABC : fixed tensor structure, λαABC : constant determining the theory (one
constant for each possible tensor structure α)
OPE is very powerful for CFTs, since is is convergent even non-perturbatively (physical
argument: scale invariance implies that asymptotic equality is equal to convergence)
Higher n-point functions are thus in principle known, since they are determined by
OPE with factorisation condition, tensor structures (conformal blocks) which are fixed
by representation theory of conformal group, and three-point OPE coefficients λαABC
In practice, already determination of conformal blocks in closed form is difficult for
higher D (in particular D = 4) and operators with spin
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Conformal Field Theories 3/3

Assume CFT with marginal interaction gV (that is, conformal for all g)
Formula for coupling-constant dependence of OPE coefficients translates into a
formula for the coupling-constant dependence of the dimensions of primary operators
[OA] and three-point OPE coefficients λαABC :
λAA1∂g [OA] =

∑
αDαA λAAV and

∂gλ
α
ABC =

∑
D
∑
β,γ

[
aT βγαABCDλ

β
VADλ

γ
BCD + bT βγαABCDλ

β
ABDλ

γ
VCD + cT βγαABCDλ

β
VBDλ

γ
ACD

]
,

where constants D and ◦T are fixed by conformal symmetry
Infinite-dimensional coupled system of ordinary differential equations for the conformal
data, consistent under non-degeneracy condition on the [OA]
In principle, system is (approximately) solvable once initial conditions are given, but
the obvious condition (free theory for g = 0) is highly degenerate
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Outlook (work in progress)

Generalisation of results for the (perturbatively interacting) OPE to curved spacetime
Proof of convergence and factorisation free theory in analytic spacetimes such as
(Anti-)de Sitter (AdS) almost complete
Proof of gauge invariance of the OPE for gauge theories more complicated
Formulas for coupling-constant dependence of OPE coefficients can be obtained after a
redefinition of composite operators (use renormalisation freedom to pass to specific
scheme)
Idea of my DFG project: show that the OPE and the formula for the coupling-constant
dependence of the coefficients are valid in AdS, can be restricted to a time-like
hypersurface and moved to the conformal boundary of AdS
Use the AdS/CFT correspondence to map this restriction from the boundary of AdS to
the dual CFT, obtaining a dual system of ODEs for the conformal data
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